
From: Mike Ounsworth <mike.ounsworth@entrust.com> via pqc-forum <pqc-forum@list.nist.gov>
To: pqc-forum <pqc-forum@list.nist.gov>
CC: pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Sunday, September 18, 2022 03:43:01 PM ET

Hi NIST PQC Forum!

This is bubble-over from an IETF thread I started last week.

Context: hash-then-sign schemes are good. For example, they allow you to pre-hash your
potentially very large message and then send just the hash value to your cryptographic
module to sign or verify. We like this pattern, it’s good for bandwidth and latency of
cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start
with a keyed message digest – in the case of randomized SPHINCS+ and FALCON, that
message digest is keyed with a random number; in the case of non-randomized SPHINCS+
and Dilithium, that message digest is keyed with values derived from the public key (for
completeness: randomized SPHINCS+ seems to be the only to do both).

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks since
the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function because
an attacker cannot pre-compute against an `r` chosen at signing time (ie the signature
scheme’s security may not need to rely on the hash function being collision resistant).

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? Is it ok to take m’ = SHA256(m) and then sign m’ ? If we care
about the built-in collision-resistance, then the answer is probably “No”. Is it safe to
externalize the keyed message digest step of SPHINCS+, Dilithium, FALCON? In the non-
randomized versions where the keyed message digest only relies on values in the public key, I
would think the answer is “Yes”. For randomized versions, that would mean having access to a

Page 1 of 2

mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

cryptographic RNG value outside the cryptographic module boundary, which, at least for FIPS
validation, is probably a “No”.

I’m eager to hear more on the design rationale for starting with a randomized or deterministic
keyed message digest, and recommendations for the safe way to external pre-hashes with
these schemes.

Mike Ounsworth
Software Security Architect, Entrust

Any email and files/attachments transmitted with it are confidential and are intended solely for the
use of the individual or entity to whom they are addressed. If this message has been sent to you in
error, you must not copy, distribute or disclose of the information it contains. Please notify Entrust
immediately and delete the message from your system.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 2 of 2

From: Christopher J Peikert <cpeikert@alum.mit.edu> via pqc-forum@list.nist.gov
To: Mike Ounsworth <mike.ounsworth@entrust.com>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Sunday, September 18, 2022 10:46:02 PM ET

On Sun, Sep 18, 2022 at 3:42 PM 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
wrote:

We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start with a keyed message
digest – in the case of randomized SPHINCS+ and FALCON, that message digest is keyed
with a random number...

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

For Falcon in particular, there is a much more essential reason for "keying" the hash by a
random number: releasing two different signatures for the same hash digest breaks the
security reduction, and likely has very bad practical consequences as well. Note that the "core"
signing procedure -- given a hash digest, output a signature -- is randomized, so different runs
on the same digest will tend to produce different signatures.

Randomized hashing ensures that the same digest essentially never reoccurs (assuming
quality randomness), even when signing the same message multiple times. See Section 2.2.2
of the Falcon spec for further details.

"Derandomizing" the signing procedure is another approach that may be suitable in some
(but not all) scenarios. We have designed and implemented a version of this approach as a
"thin wrapper" around the Falcon API; see the specification for the motivation, details, and
caveats. Signatures produced using this deterministic method can easily be transformed into
ones that are accepted by a verifier who expects randomized ones (but not vice versa). But
due to this compatibility, our approach has the same issues as randomized Falcon when it
comes to externalized hashing.

Page 1 of 3

mailto:cpeikert@alum.mit.edu
mailto:pqc-forum@list.nist.gov
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-sign.info%2Ffalcon.pdf&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Cb126d2bdcffb4a9d143908da99e915a6%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637991523623660042%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ocK5Hu7b22UgA%2B22yZZIxGMsSF5RemfWL%2FZJqvlRpME%3D&reserved=0
https://github.com/algorand/falcon
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

This looks right to me, though it's not clear how much of a benefit this really is. For example,
Falcon's security analysis models the hash function as a "random oracle," which is an even
stronger assumption than collision resistance.

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? ... For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which, at
least for FIPS validation, is probably a “No”.

Unfortunately, the "dream" goal of externalized, deterministic, stateless hashing inherently
requires collision resistance (of that external hash function): the adversary knows the
function, so it can attempt to find collisions in it. Any valid signature for one of the colliding
messages is inherently also a valid signature for the other colliding message.

One remark is that, when modeling the hash function as a random oracle, it is not strictly
necessary that the "random" value actually be random -- it is enough that it never be repeated
(at least not for repeated signings of the same message under the same key). In this sense, it
need only be a "nonce" in the true sense of the word: a Number used only ONCE.

So, if there is a way to generate a true nonce outside the cryptographic module, perhaps that
can be used. However, if the nonce is fairly predictable then we shouldn't expect to get the
above-noted benefits of randomization (whatever they may be). And this is not even getting
into the serious misuse risks of an API that allows the caller to set the nonce.

Given all this, to me it seems that (for Falcon at least) the best way to externalize hashing of
huge data is through some extra "envelope" layer that pre-hashes the data in a suitable way,
then signs the result as if it were the true message. One can then focus on the security
properties of the envelope.

Sincerely yours in cryptography,

Chris

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 2 of 3

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com.

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Simon Josefsson <simon@josefsson.org> via CFRG <cfrg-bounces@irtf.org>
To: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 04:55:34 AM ET
Attachments: signature.asc

ATT00001.txt

Mike Ounsworth <Mike.Ounsworth=40entrust.com@dmarc.ietf.org> writes:

> Hi NIST PQC Forum!

>

> This is bubble-over from an IETF thread I started last week.

>

> Context: hash-then-sign schemes are good.

My take is that we should question your assumption.

Engineers have used hash-then-sign as a design axiom and forced that

design on cryptographic primitives. Cryptographers led engineers form

that thinking because historic public-key signature schemes used the

hash-then-sign approach. However, cryptographic primitives has moved

away from that design long time ago. Engineers are still firmly in the

old thinking.

We had the same discussion related to Ed25519, and the CFRG ended up in

a compromise to re-introduce the less secure hash-then-sign variant for,

what I can tell, practical engineering trade-offs with existing

protocols. We all know how this tends to play out in the long term.

So please, design your protocols to not assume the less secure

hash-then-sign approach of public-key signing schemes.

/Simon

Page 1 of 1

mailto:simon@josefsson.org
mailto:cfrg-bounces@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

-----BEGIN PGP SIGNATURE-----

iIoEARYIADIWIQSjzJyHC50xCrrUzy9RcisI/kdFogUCYyguPhQcc2ltb25Aam9z

ZWZzc29uLm9yZwAKCRBRcisI/kdFonDnAQDOmd1ksm29Yko9Th1vdtlonCxAI7Md

V0nbiLocvO6AtAD/ThBEYjniXc/2Uh2W4SaC+gXQp+FAaWTYAhXs39yv1Ak=

=Zlad

-----END PGP SIGNATURE-----

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

From: Dmitry Belyavsky <beldmit@gmail.com> via CFRG <cfrg-bounces@irtf.org>
To: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 07:12:10 AM ET
Attachments: ATT00001.txt

Just 2c

FIPS 140-3 seem to forbid hashing outside the module boundary and signing inside.

On Sun, Sep 18, 2022 at 9:42 PM Mike Ounsworth
<Mike.Ounsworth=40entrust.com@dmarc.ietf.org> wrote:

Hi NIST PQC Forum!

This is bubble-over from an IETF thread I started last week.

Context: hash-then-sign schemes are good. For example, they allow you to pre-hash your
potentially very large message and then send just the hash value to your cryptographic
module to sign or verify. We like this pattern, it’s good for bandwidth and latency of
cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start
with a keyed message digest – in the case of randomized SPHINCS+ and FALCON, that
message digest is keyed with a random number; in the case of non-randomized SPHINCS+
and Dilithium, that message digest is keyed with values derived from the public key (for
completeness: randomized SPHINCS+ seems to be the only to do both).

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

Page 1 of 2

mailto:beldmit@gmail.com
mailto:cfrg-bounces@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

mailto:40entrust.com@dmarc.ietf.org

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? Is it ok to take m’ = SHA256(m) and then sign m’ ? If we
care about the built-in collision-resistance, then the answer is probably “No”. Is it safe to
externalize the keyed message digest step of SPHINCS+, Dilithium, FALCON? In the non-
randomized versions where the keyed message digest only relies on values in the public
key, I would think the answer is “Yes”. For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which, at
least for FIPS validation, is probably a “No”.

I’m eager to hear more on the design rationale for starting with a randomized or
deterministic keyed message digest, and recommendations for the safe way to external pre-
hashes with these schemes.

Mike Ounsworth
Software Security Architect, Entrust

Any email and files/attachments transmitted with it are confidential and are intended solely for
the use of the individual or entity to whom they are addressed. If this message has been sent to
you in error, you must not copy, distribute or disclose of the information it contains. Please notify
Entrust immediately and delete the message from your system.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

--
SY, Dmitry Belyavsky

Dmitry Belyavsky <beldmit@gmail.com>

Page 2 of 2

mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.dang%40nist.gov%7Cc28a0278ea2045bf207b08da9a2fc6d1%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637991827303533962%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0hoefEC4CA%2FQWirzAZRdaAlCZ1MLICrlaXerzEYhKwY%3D&reserved=0

From: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Mike Ounsworth <mike.ounsworth@entrust.com>, pqc-forum <pqc-forum@list.nist.gov>
CC: pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] RE: Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 08:42:43 AM ET

If you’re looking for design justifications, in the case of Sphincs+, we prepend both data from
the public key and a random value for two reasons:

We prepend random data, as you suspected, to avoid collision attacks; we don’t assume
collision resistance anywhere else in the Sphincs+ structure, but instead rely on weaker
assumptions of the hash function.
We prepend data from the public key to avoid multitarget attacks; that is, if the attacker
has multiple public keys that he is attacking, we try to make it so that he has no
advantage over an attacker with a single public key.

Of course, Sphincs+ is an intentionally conservative design; one could argue that the second
attack doesn’t really apply to SHA256(m) (because even if the attacker has 2^64 public keys
that all signed messages, the direct multicollision attack without this protection would still
take an expected 2^192 time on a conventional computer, which is completely infeasible, and
at least 2^96 time on a Quantum one (and likely more – coming up with a more realistic lower
bound is nontrivial) – I would argue that is similarly infeasible.

On the other hand, if one were to use prehashing, I would argue that the prehash should be
with a very conservative hash function (say, SHA-512 or SHA3-512); we are putting all our
hybrid eggs in this one hashing basket, and so we should make sure this one basket is a good
one.

From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Sunday, September 18, 2022 3:42 PM
To: pqc-forum <pqc-forum@list.nist.gov>
Cc: pqc@ietf.org; cfrg@irtf.org
Subject: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium,
FALCON?

Hi NIST PQC Forum!

This is bubble-over from an IETF thread I started last week.

•

•

Page 1 of 3

mailto:sfluhrer@cisco.com
mailto:pqc-forum@list.nist.gov
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

Context: hash-then-sign schemes are good. For example, they allow you to pre-hash your
potentially very large message and then send just the hash value to your cryptographic
module to sign or verify. We like this pattern, it’s good for bandwidth and latency of
cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start
with a keyed message digest – in the case of randomized SPHINCS+ and FALCON, that
message digest is keyed with a random number; in the case of non-randomized SPHINCS+
and Dilithium, that message digest is keyed with values derived from the public key (for
completeness: randomized SPHINCS+ seems to be the only to do both).

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks since
the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function because
an attacker cannot pre-compute against an `r` chosen at signing time (ie the signature
scheme’s security may not need to rely on the hash function being collision resistant).

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? Is it ok to take m’ = SHA256(m) and then sign m’ ? If we care
about the built-in collision-resistance, then the answer is probably “No”. Is it safe to
externalize the keyed message digest step of SPHINCS+, Dilithium, FALCON? In the non-
randomized versions where the keyed message digest only relies on values in the public key, I
would think the answer is “Yes”. For randomized versions, that would mean having access to a
cryptographic RNG value outside the cryptographic module boundary, which, at least for FIPS
validation, is probably a “No”.

I’m eager to hear more on the design rationale for starting with a randomized or deterministic
keyed message digest, and recommendations for the safe way to external pre-hashes with
these schemes.

Mike Ounsworth
Software Security Architect, Entrust

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 2 of 3

Any email and files/attachments transmitted with it are confidential and are intended solely for the
use of the individual or entity to whom they are addressed. If this message has been sent to you in
error, you must not copy, distribute or disclose of the information it contains. Please notify Entrust
immediately and delete the message from your system.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlo
ok.com.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer

From: Jeff Burdges <burdges@gnunet.org> via pqc-forum@list.nist.gov
To: Simon Josefsson <simon=40josefsson.org@dmarc.ietf.org>
CC: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>, pqc-forum <pqc-

forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Monday, September 19, 2022 09:23:07 AM ET

On Sep 19 2022, at 10:54 am, Simon Josefsson

<simon=40josefsson.org@dmarc.ietf.org> wrote:

> So please, design your protocols to not assume the less secure

> hash-then-sign approach of public-key signing schemes.

We need the actual concerns to be spelled out clearly, so people can

work within them, not simply an opaque rule against hashing.

It's clear people shall sign Merkle tree roots, like if making a

certificate on a SPHINCS+ public key for example. ;)

Jeff

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/A9068746-DDA9-4430-BDFA-0B64789F2ADD%40getmailspring.com.

Page 1 of 1

mailto:burdges@gnunet.org
mailto:pqc-forum@list.nist.gov
mailto:simon=40josefsson.org@dmarc.ietf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

From: Soatok Dreamseeker <soatok.dhole@gmail.com> via CFRG <cfrg-bounces@irtf.org>
To: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 09:27:52 AM ET
Attachments: ATT00001.txt

Is it ok to take m’ = SHA256(m) and then sign m’

My preference would be to consider three design constraints:

1. Domain separation
2. Exclusive ownership
3. Context binding

If m is a low-entropy message, you might have some interesting cross-protocol interactions
from just a simple hash. Instead of m' = SHA256(m), m' = HMAC_SHA256(c, m) where c is a
constant specific to the signature algorithm (i.e. "SPHINCS+SHA3-256"). This gives you the
"domain separation" property from my above list.

For exclusive ownership, include the public key in the message being hashed. For multipart
messages, prefix each part with the length (as a 64-bit unsigned integer) of the piece. So now
you have HMAC_SHA256(c, len(pk) || pk || len(m) || m).

In code, this might look like this:

// Given (secretKey, publicKey, message, SIG_ALGO)
state = crypto.createHmac('sha256', SIG_ALGO)
state.update(len64(publicKey))
state.update(publicKey)
state.update(len64(message))
state.update(lmessage)
return sphincsPlus.sign(state.digest(), secretKey)

Does this need to be specified at a lower level? Perhaps not. For starters, the EO concerns are
relevant for RSA and ECDSA. I don't know offhand if they apply to Lattice signatures or hash-
based signatures.

Page 1 of 3

mailto:soatok.dhole@gmail.com
mailto:cfrg-bounces@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.bolet.org%2F~pornin%2F2005-acns-pornin%2Bstern.pdf&data=05%7C01%7Cquynh.dang%40nist.gov%7C5f77a0353c8f4c52a83908da9a42beaa%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637991908717880172%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=7o2cIA9nf41vzwW5NltQcx4yVveooC672UqHpf4VogE%3D&reserved=0

That being said, addressing the final concern (context-binding) extends the above code
snippet to include some protocol-specific constant. This might be useful if you wanted to use
the same keypair for multiple protocols, but only deal with the overhead of one CA certificate.

// Given (secretKey, publicKey, message, SIG_ALGO , CONTEXT)
state = crypto.createHmac('sha256', SIG_ALGO)
state.update(len64(CONTEXT))
state.update(CONTEXT)
state.update(len64(publicKey))
state.update(publicKey)
state.update(len64(message))
state.update(lmessage)
return sphincsPlus.sign(state.digest(), secretKey)

Just my 2c.

On Sun, Sep 18, 2022 at 3:43 PM Mike Ounsworth
<Mike.Ounsworth=40entrust.com@dmarc.ietf.org> wrote:

Hi NIST PQC Forum!

This is bubble-over from an IETF thread I started last week.

Context: hash-then-sign schemes are good. For example, they allow you to pre-hash your
potentially very large message and then send just the hash value to your cryptographic
module to sign or verify. We like this pattern, it’s good for bandwidth and latency of
cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start
with a keyed message digest – in the case of randomized SPHINCS+ and FALCON, that
message digest is keyed with a random number; in the case of non-randomized SPHINCS+
and Dilithium, that message digest is keyed with values derived from the public key (for
completeness: randomized SPHINCS+ seems to be the only to do both).

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the same

Soatok Dreamseeker <soatok.dhole@gmail.com>

Page 2 of 3

mailto:40entrust.com@dmarc.ietf.org

message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? Is it ok to take m’ = SHA256(m) and then sign m’ ? If we
care about the built-in collision-resistance, then the answer is probably “No”. Is it safe to
externalize the keyed message digest step of SPHINCS+, Dilithium, FALCON? In the non-
randomized versions where the keyed message digest only relies on values in the public
key, I would think the answer is “Yes”. For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which, at
least for FIPS validation, is probably a “No”.

I’m eager to hear more on the design rationale for starting with a randomized or
deterministic keyed message digest, and recommendations for the safe way to external pre-
hashes with these schemes.

Mike Ounsworth
Software Security Architect, Entrust

Any email and files/attachments transmitted with it are confidential and are intended solely for
the use of the individual or entity to whom they are addressed. If this message has been sent to
you in error, you must not copy, distribute or disclose of the information it contains. Please notify
Entrust immediately and delete the message from your system.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

Soatok Dreamseeker <soatok.dhole@gmail.com>

Page 3 of 3

mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.dang%40nist.gov%7C5f77a0353c8f4c52a83908da9a42beaa%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637991908717880172%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=oVH3yphScKrdgV7ZBriUbxHoKlSCHHBkKqBDdLSHljk%3D&reserved=0

From: Jeff Burdges <burdges@gnunet.org> via pqc-forum@list.nist.gov
To: Scott Fluhrer (sfluhrer) <sfluhrer=40cisco.com@dmarc.ietf.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Monday, September 19, 2022 09:42:36 AM ET

On Sep 19 2022, at 2:42 pm, Scott Fluhrer (sfluhrer)

<sfluhrer=40cisco.com@dmarc.ietf.org> wrote:

> If you’re looking for design justifications, in the case of Sphincs+,

> we prepend both data from the public key and a random value for two reasons:

There exist protocols that require verifiable random functions (VRFs),

of which the only performant conservative PQ scheme is stateful

single-layer XMSS, meaning a simple hash-based signature without

internal certificates.

It's not good that keys must rotate frequently of course. In fact key

rotation kinda kills some nice VRF protocols like NSEC5.

> We prepend random data, as you suspected, to avoid collision attacks;

> we don’t assume collision resistance anywhere else in the Sphincs+

> structure, but instead rely on weaker assumptions of the hash function.

VRFs cannot prepend random data obviously.

> We prepend data from the public key to avoid multitarget attacks; that

> is, if the attacker has multiple public keys that he is attacking, we

> try to make it so that he has no advantage over an attacker with a

> single public key.

VRFs can prepend the public key however (and typically do so already).

Best,

Jeff

Page 1 of 2

mailto:burdges@gnunet.org
mailto:pqc-forum@list.nist.gov
mailto:sfluhrer=40cisco.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/DB3C6A64-800A-48A3-947E-AAE69FA091FA%40getmailspring.com.

Jeff Burdges <burdges@gnunet.org>

Page 2 of 2

From: Riad S. Wahby <rsw@jfet.org> via CFRG <cfrg-bounces@irtf.org>
To: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 10:34:52 AM ET

Hello Mike,

For Falcon, randomization is extremely important for another reason.

Section 2.2.2 of the specification has details.

 https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-

sign.info%2Ffalcon.pdf&data=05%7C01%7Cquynh.dang%40nist.gov%7C26c90a00a5ff45cf1fc

008da9a4c1af5%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637991948918592597%7CUnkno

wn%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7

C3000%7C%7C%7C&sdata=N1CtL0E7IMa637GOm5djllH95QRQmbHYAK1NT7vBecc%3D&reserved=

0

In short: revealing two distinct signatures on the same message breaks

the scheme. If the signer were completely deterministic that wouldn't

be an issue, but in practice it's not: for performance reasons, the Falcon

signer uses hardware-accelerated floating-point arithmetic to sample from

a specific distribution, and different FPUs are allowed by IEEE-754 to give

different results. This means that signing the same message with the same

key on two different machines could accidentally reveal the signing key.

To address this, the Falcon signer salts the message with a long enough

random string that the signer will never sign the same message twice.

This implicitly gives protection against the attacks that you mention,

but even if those attacks are not a concern the Falcon signer must still

be randomized (or the scheme must be made stateful, or the signer must

use deterministic software floating-point routines, or the key must only

be used on one machine---each a potentially annoying limitation).

Based on the above I would be terrified of a Falcon implementation that

depended on the caller to salt and pre-hash.

Cheers,

Page 1 of 3

mailto:rsw@jfet.org
mailto:cfrg-bounces@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

-=rsw

Mike Ounsworth <Mike.Ounsworth=40entrust.com@dmarc.ietf.org> wrote:

> Hi NIST PQC Forum!

>

> This is bubble-over from an IETF thread I started last week.

>

> Context: hash-then-sign schemes are good. For example, they allow you to pre-hash

your potentially very large message and then send just the hash value to your

cryptographic module to sign or verify. We like this pattern, it's good for bandwidth

and latency of cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium,

and FALCON all start with a keyed message digest - in the case of randomized SPHINCS+

and FALCON, that message digest is keyed with a random number; in the case of non-

randomized SPHINCS+ and Dilithium, that message digest is keyed with values derived

from the public key (for completeness: randomized SPHINCS+ seems to be the only to do

both).

>

> A quick skim through the submission documents for the three schemes shows that the

message randomization is intended as a protection against differential and fault

attacks since the traces would not be repeatable between subsequent signatures even

of the same message. Unless I missed something, I don't see any other justification

given for the use of keyed message digests (randomized or deterministic).

>

> But it seems to me that, especially the randomized version, keyed message digests

also protect against yet-to-be-discovered collision attacks in the underlying hash

function because an attacker cannot pre-compute against an `r` chosen at signing time

(ie the signature scheme's security may not need to rely on the hash function being

collision resistant).

>

> Question:

> So what is the safe way to externally pre-hash messages for these schemes in order

to achieve a hash-then-sign scheme? Is it ok to take m' = SHA256(m) and then sign

m' ? If we care about the built-in collision-resistance, then the answer is probably

"No". Is it safe to externalize the keyed message digest step of SPHINCS+, Dilithium,

FALCON? In the non-randomized versions where the keyed message digest only relies on

values in the public key, I would think the answer is "Yes". For randomized versions,

that would mean having access to a cryptographic RNG value outside the cryptographic

module boundary, which, at least for FIPS validation, is probably a "No".

>

Riad S. Wahby <rsw@jfet.org>

Page 2 of 3

>

> I'm eager to hear more on the design rationale for starting with a randomized or

deterministic keyed message digest, and recommendations for the safe way to external

pre-hashes with these schemes.

>

> ---

> Mike Ounsworth

> Software Security Architect, Entrust

>

> Any email and files/attachments transmitted with it are confidential and are

intended solely for the use of the individual or entity to whom they are addressed.

If this message has been sent to you in error, you must not copy, distribute or

disclose of the information it contains. Please notify Entrust immediately and delete

the message from your system.

> ___

> CFRG mailing list

> CFRG@irtf.org

> https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.d

ang%40nist.gov%7C26c90a00a5ff45cf1fc008da9a4c1af5%7C2ab5d82fd8fa4797a93e054655c61dec%

7C1%7C0%7C637991948918592597%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2lu

MzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3cV2%2BU7gZbau2XuhadZkgF

u%2FtI27NfPPFqHwMKVxRYs%3D&reserved=0

CFRG mailing list

CFRG@irtf.org

https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.d

ang%40nist.gov%7C26c90a00a5ff45cf1fc008da9a4c1af5%7C2ab5d82fd8fa4797a93e054655c61dec%

7C1%7C0%7C637991948918748845%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2lu

MzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rnHxuv7p19V8Yfex%2BJXZln

rxX4xpLN6lMGp1Uy9XzxE%3D&reserved=0

Riad S. Wahby <rsw@jfet.org>

Page 3 of 3

From: Kampanakis, Panos <kpanos@amazon.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Riad S. Wahby <rsw@jfet.org>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] RE: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Monday, September 19, 2022 11:27:39 AM ET

> Based on the above I would be terrified of a Falcon implementation that depended on

the caller to salt and pre-hash.

Thx for the clarifications. Let's say we passed the SHA2/3-512 digest of the message

to Falcon for randomized signing (as specified). Are there any practical concerns

with that?

-----Original Message-----

From: CFRG <cfrg-bounces@irtf.org> On Behalf Of Riad S. Wahby

Sent: Monday, September 19, 2022 10:34 AM

To: Mike Ounsworth <Mike.Ounsworth=40entrust.com@dmarc.ietf.org>

Cc: pqc-forum <pqc-forum@list.nist.gov>; pqc@ietf.org; cfrg@irtf.org

Subject: RE: [EXTERNAL][CFRG] Design rationale for keyed message digests in SPHINCS+,

Dilithium, FALCON?

CAUTION: This email originated from outside of the organization. Do not click links

or open attachments unless you can confirm the sender and know the content is safe.

Hello Mike,

For Falcon, randomization is extremely important for another reason.

Section 2.2.2 of the specification has details.

Page 1 of 2

mailto:kpanos@amazon.com
mailto:pqc-forum@list.nist.gov
mailto:rsw@jfet.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

 https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-

sign.info%2Ffalcon.pdf&data=05%7C01%7Cyi-

kai.liu%40nist.gov%7C87d0f3047ec44d5c1b1608da9a537ab5%7C2ab5d82fd8fa4797a93e054655c61

dec%7C1%7C0%7C637991980589813367%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoi

V2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=oVqh1x4TTdKMI%2BDoS6

7okOIuPURP%2FL8x6r1LYKPGEBw%3D&reserved=0

In short: revealing two distinct signatures on the same message breaks the scheme. If

the signer were completely deterministic that wouldn't be an issue, but in practice

it's not: for performance reasons, the Falcon signer uses hardware-accelerated

floating-point arithmetic to sample from a specific distribution, and different FPUs

are allowed by IEEE-754 to give different results. This means that signing the same

message with the same key on two different machines could accidentally reveal the

signing key.

To address this, the Falcon signer salts the message with a long enough random string

that the signer will never sign the same message twice.

This implicitly gives protection against the attacks that you mention, but even if

those attacks are not a concern the Falcon signer must still be randomized (or the

scheme must be made stateful, or the signer must use deterministic software floating-

point routines, or the key must only be used on one machine---each a potentially

annoying limitation).

Based on the above I would be terrified of a Falcon implementation that depended on

the caller to salt and pre-hash.

Cheers,

-=rsw

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/a157a4f8d9bc449c84e07447d7874646%40amazon.com.

Kampanakis, Panos <kpanos@amazon.com>

Page 2 of 2

From: Riad S. Wahby <rsw@jfet.org> via CFRG <cfrg-bounces@irtf.org>
To: Kampanakis, Panos <kpanos@amazon.com>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 01:53:09 PM ET

"Kampanakis, Panos" <kpanos@amazon.com> wrote:

>> Based on the above I would be terrified of a Falcon implementation that

>> depended on the caller to salt and pre-hash.

>

> Thx for the clarifications. Let's say we passed the SHA2/3-512 digest

> of the message to Falcon for randomized signing (as specified). Are there

> any practical concerns with that?

No concerns beyond the more general question as to whether pre-hashing is

appropriate or not. In other words: if you're willing to pre-hash in other

cases, you should also be willing to pre-hash in this case provided that

the Falcon signer salts its inputs in compliance with the specification.

Cheers,

-=rsw

CFRG mailing list

CFRG@irtf.org

https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.d

ang%40nist.gov%7C1c56a7a0c0f24ab60bfb08da9a67cd8b%7C2ab5d82fd8fa4797a93e054655c61dec%

7C1%7C0%7C637992067889454981%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2lu

MzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=q40wttGWn%2BsqmObOL8xbfJ

FE05j%2FUp%2BlQKw1QEo9F%2BI%3D&reserved=0

Page 1 of 1

mailto:rsw@jfet.org
mailto:cfrg-bounces@irtf.org
mailto:kpanos@amazon.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

From: Mike Ounsworth <mike.ounsworth@entrust.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Mike Ounsworth <mike.ounsworth@entrust.com>, pqc-forum <pqc-forum@list.nist.gov>
CC: pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] RE: Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Monday, September 19, 2022 05:17:54 PM ET

Thank you all for the wholesome discussion all!

Here is my attempt to summarize: we have a few fundamental options:

Option 0: Do not pre-hash; send the whole message to the cryptographic primitive.

Discussion: There will be at least some applications where this is not practical; for example
imagine signing a 25 mb email with a smartcard. Streaming the entire 25 mb to the smartcard
sounds like you’d be sitting there waiting for a human-irritating amount of time. Validation of
firmware images during secure boot is another case that comes to mind where you want to
digest in-place and not stream the firmware image over an internal BUS.

Option 1: Simple pre-hash m’ = SHA256(m); sign(m)

Discussion: Don’t, for various reasons, none of which are catastrophic to the algorithm
security, but there are better ways.

Option 2: Externalize the keyed digest step of SPHINCS+, Dilithium, FALCON to the client.

Discussion: REALLY DON’T! This can be private-key-recovery-level catastrophic for FALCON. For
Dilithium and non-randomized SPHINCS+ this might be cryptographically sound, but
regardless, moving part of the algorithm outside the crypto module boundary is unlikely to
ever pass a FIPS validation.

Option 3: Application-level envelopes

Discussion: if your application has a need to only send a small amount of data to the crypto
module, then your application needs to define a compressing envelope format, and sign that.
How fancy the envelope format needs to be is dictated by the security needs of the protocol –
ie collision resistance, entropy, contains a nonce, algorithm code footprint, performance, etc.
Downside is that we’re not solving this problem centrally, but delegating the problem of doing
this securely to each protocol design team.

This seems to be the winning option.

Page 1 of 3

mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

Have I understood and summarized correctly?

Mike Ounsworth
Software Security Architect, Entrust

From: 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
Sent: September 18, 2022 2:42 PM
To: pqc-forum <pqc-forum@list.nist.gov>
Cc: pqc@ietf.org; cfrg@irtf.org
Subject: [EXTERNAL] [pqc-forum] Design rationale for keyed message digests in SPHINCS+,
Dilithium, FALCON?

WARNING: This email originated outside of Entrust.
DO NOT CLICK links or attachments unless you trust the sender and know the content is safe.

Hi NIST PQC Forum!

This is bubble-over from an IETF thread I started last week.

Context: hash-then-sign schemes are good. For example, they allow you to pre-hash your
potentially very large message and then send just the hash value to your cryptographic
module to sign or verify. We like this pattern, it’s good for bandwidth and latency of
cryptographic modules. We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start
with a keyed message digest – in the case of randomized SPHINCS+ and FALCON, that
message digest is keyed with a random number; in the case of non-randomized SPHINCS+
and Dilithium, that message digest is keyed with values derived from the public key (for
completeness: randomized SPHINCS+ seems to be the only to do both).

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks since
the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function because
an attacker cannot pre-compute against an `r` chosen at signing time (ie the signature
scheme’s security may not need to rely on the hash function being collision resistant).

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 2 of 3

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? Is it ok to take m’ = SHA256(m) and then sign m’ ? If we care
about the built-in collision-resistance, then the answer is probably “No”. Is it safe to
externalize the keyed message digest step of SPHINCS+, Dilithium, FALCON? In the non-
randomized versions where the keyed message digest only relies on values in the public key, I
would think the answer is “Yes”. For randomized versions, that would mean having access to a
cryptographic RNG value outside the cryptographic module boundary, which, at least for FIPS
validation, is probably a “No”.

I’m eager to hear more on the design rationale for starting with a randomized or deterministic
keyed message digest, and recommendations for the safe way to external pre-hashes with
these schemes.

Mike Ounsworth
Software Security Architect, Entrust

Any email and files/attachments transmitted with it are confidential and are intended solely for the
use of the individual or entity to whom they are addressed. If this message has been sent to you in
error, you must not copy, distribute or disclose of the information it contains. Please notify Entrust
immediately and delete the message from your system.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CH0PR11MB57394C98AA026DB0649C3FBC9F4A9%40CH0PR11MB5739.namprd11.prod.outlo
ok.com.

Mike Ounsworth <mike.ounsworth@entrust.com>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB57394C98AA026DB0649C3FBC9F4A9*40CH0PR11MB5739.namprd11.prod.outlook.com%3Futm_medium%3Demail%26utm_source%3Dfooter__%3BJQ!!FJ-Y8qCqXTj2!Zf0ZiH4eTAk-6KCmI2wM16tZeKQkPvZJLr9rfWb25I47NL4JdyYO8DIJwIT5FbCQBjYVfKCiDVtAgWWBIdOA_kMKtOsnM7WkpPA%24&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C5e44f483f1ac4d852e0d08da9a84684c%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992190740555265%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=F1kFSXokwuptOHTqtdn4C%2FsYDMddAqZHbFcP7Z%2B5nP8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB57394C98AA026DB0649C3FBC9F4A9*40CH0PR11MB5739.namprd11.prod.outlook.com%3Futm_medium%3Demail%26utm_source%3Dfooter__%3BJQ!!FJ-Y8qCqXTj2!Zf0ZiH4eTAk-6KCmI2wM16tZeKQkPvZJLr9rfWb25I47NL4JdyYO8DIJwIT5FbCQBjYVfKCiDVtAgWWBIdOA_kMKtOsnM7WkpPA%24&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C5e44f483f1ac4d852e0d08da9a84684c%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992190740555265%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=F1kFSXokwuptOHTqtdn4C%2FsYDMddAqZHbFcP7Z%2B5nP8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB57394C98AA026DB0649C3FBC9F4A9*40CH0PR11MB5739.namprd11.prod.outlook.com%3Futm_medium%3Demail%26utm_source%3Dfooter__%3BJQ!!FJ-Y8qCqXTj2!Zf0ZiH4eTAk-6KCmI2wM16tZeKQkPvZJLr9rfWb25I47NL4JdyYO8DIJwIT5FbCQBjYVfKCiDVtAgWWBIdOA_kMKtOsnM7WkpPA%24&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C5e44f483f1ac4d852e0d08da9a84684c%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992190740555265%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=F1kFSXokwuptOHTqtdn4C%2FsYDMddAqZHbFcP7Z%2B5nP8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FCH0PR11MB57394C98AA026DB0649C3FBC9F4A9*40CH0PR11MB5739.namprd11.prod.outlook.com%3Futm_medium%3Demail%26utm_source%3Dfooter__%3BJQ!!FJ-Y8qCqXTj2!Zf0ZiH4eTAk-6KCmI2wM16tZeKQkPvZJLr9rfWb25I47NL4JdyYO8DIJwIT5FbCQBjYVfKCiDVtAgWWBIdOA_kMKtOsnM7WkpPA%24&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C5e44f483f1ac4d852e0d08da9a84684c%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992190740555265%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=F1kFSXokwuptOHTqtdn4C%2FsYDMddAqZHbFcP7Z%2B5nP8%3D&reserved=0

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Soatok Dreamseeker <soatok.dhole@gmail.com>
CC: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>, pqc-forum <pqc-

forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: [pqc-forum] Re: [CFRG] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Monday, September 19, 2022 05:24:39 PM ET

On Mon, Sep 19, 2022 at 9:26 AM Soatok Dreamseeker <soatok.dhole@gmail.com> wrote:

Is it ok to take m’ = SHA256(m) and then sign m’

My preference would be to consider three design constraints:

1. Domain separation
2. Exclusive ownership
3. Context binding

I agree with those concerns, but...

Seems to me that there is a layering issue here and two sets of concerns driving a very similar technical
control on both sides of the abstraction boundary where these are probably better addressed in one
place.

And we are getting a lot of abstract reasoning that is being justified with technical terms whose meaning
is not necessarily shared by all the people involved.

So lets have a concrete example. I have a 5TB hard drive on it. I want to create a signature on the image
taken by the forensics tool and it is 2TB after compression. As far as the application is concerned, that is
the signature payload. That is not necessarily the input to the signature.

A signature over the raw payload is has never been very useful on its own. There has been data bound
into the signature since PKCS#1 which has always bound the digest algorithm into the sig to prevent
digest substitution attacks.

The question is not whether you want to tie in additional data but what data and where. In the case of
some of the PDQ algorithms we have the question of whether to make the signature deterministic or not
and if so, where that happens

If the core signature algorithm is s(m,k) where k is the key and we want to include a nonce, do we want to
create the signature over:

A: s (payload + meta + nonce, k)

Page 1 of 2

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:soatok.dhole@gmail.com
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:soatok.dhole@gmail.com
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.bolet.org%2F~pornin%2F2005-acns-pornin%2Bstern.pdf&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C1b0ca6cb2815401f1a7408da9a8559ef%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992194792566699%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=5Z7rw7kABr6UEQcWyFbkCiJqIUz8PlT7jClia7Q%2BRkg%3D&reserved=0

B: s (H(payload) + meta + nonce, k)

C: s (H(H(payload) + meta1) + meta2 + nonce, k)

The best performance wise is B since we only end up doing one extra hash. A is clearly ludicrous and isn't
going to happen no matter what because a HSM likely doesn't have the bandwidth to process that
amount of data.

My preference is to always use a hash over an input that includes a randomized nonce because it
provides a lot of protection against a lot of implementation and protocol blunders. The only downside is
that it makes testing problematic.

Back in the day, PCKS#1 and PKCS#7 were coming from the same place. Now they are different. I want my
cryptographic packaging format to be doing all the work of assembling the input that goes into the
signature function because my experience is that unless great care is taken, having a responsibility
divided across two layers tends to end up with it being performed by neither rather than both.

If I care about a signature enough to use Dilithium, I am almost certainly going to be enrolling it in a
notary chain.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CAMm%2BLwi_deJyV4mkgQELTH7401ADxLOjUXxj4k0Y%3DF-
NrMaU_w%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 2

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi_deJyV4mkgQELTH7401ADxLOjUXxj4k0Y%3DF-NrMaU_w%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi_deJyV4mkgQELTH7401ADxLOjUXxj4k0Y%3DF-NrMaU_w%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi_deJyV4mkgQELTH7401ADxLOjUXxj4k0Y%3DF-NrMaU_w%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Michael Richardson <mcr+ietf@sandelman.ca> via CFRG <cfrg-bounces@irtf.org>
To: Mike Ounsworth <mike.ounsworth=40entrust.com@dmarc.ietf.org>
CC: pqc@ietf.org, pqc-forum <pqc-forum@list.nist.gov>, cfrg@irtf.org
Subject: Re: [CFRG] [Pqc] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Tuesday, September 20, 2022 06:08:39 AM ET
Attachments: signature.asc

ATT00001.txt

Mike Ounsworth <Mike.Ounsworth=40entrust.com@dmarc.ietf.org> wrote:

 > time. Validation of firmware images during secure boot is another case

 > that comes to mind where you want to digest in-place and not stream the

 > firmware image over an internal BUS.

...

 > Option 3: Application-level envelopes

 > Discussion: if your application has a need to only send a small amount

 > of data to the crypto module, then your application needs to define a

 > compressing envelope format, and sign that. How fancy the envelope

 > format needs to be is dictated by the security needs of the protocol –

 > ie collision resistance, entropy, contains a nonce, algorithm code

So, basically the SUIT manifest is a "compressing envelope" that deals with

validating firmware images. The manifest is somewhere between 500bytes and

10K (in really rare cases), so it should not be a problem to feed it all into

the crypto module.

 > This seems to be the winning option.

 > Have I understood and summarized correctly?

I think so.

 > footprint, performance, etc. Downside is that we’re not solving this

 > problem centrally, but delegating the problem of doing this securely to

 > each protocol design team.

Page 1 of 2

mailto:mcr+ietf@sandelman.ca
mailto:cfrg-bounces@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org
mailto:pqc@ietf.org
mailto:pqc-forum@list.nist.gov
mailto:cfrg@irtf.org

-----BEGIN PGP SIGNATURE-----

iQEzBAEBCgAdFiEERK+9HEcJHTJ9UqTMlUzhVv38QpAFAmMpkOEACgkQlUzhVv38

QpCROgf9H3zDRw1AMakTvr/hGn5jwVc1X61e0Fik660EZp9qJRky3PZl963R5LBX

09ag+0ArL8uXqIIgUoGMYCsqBA1y9lWaI9YEqnSz8Aua/19nKSnNYuXjBIcgrofK

LolHGWW8Ivr9mixfQ+SFy3na+KWGgtxt8HXzt5vgQHrPG5EadVkuIovYQH2oaFzq

G+5c/xS+duZP4gQGoVvEPtoI8bf9bGoPWENiokX9++UeGET076SdYHxmenJReWs1

EwhDbqa1HkQkCPmQyftuonFUVfKd4XF1lGIAl7bFA4/rRVzqPaIO16E+R5Y0PMuo

6hm/bPNuPSKlqUmpNb8fp9J9mcbemQ==

=yDz6

-----END PGP SIGNATURE-----

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

So, on the "delegating" question: having a few good designs written down

would make the protocol designers happier.

--

Michael Richardson <mcr+IETF@sandelman.ca>, Sandelman Software Works

 -= IPv6 IoT consulting =-

Michael Richardson <mcr+ietf@sandelman.ca>

Page 2 of 2

From: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com> via pqc-forum <pqc-forum@list.nist.gov>
To: Christopher J Peikert <cpeikert@alum.mit.edu>, Mike Ounsworth

<mike.ounsworth@entrust.com>
CC: pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org, cfrg@irtf.org
Subject: RE: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Tuesday, September 20, 2022 08:52:59 AM ET

If Falcon has an issue with bad entropy during signing, might I suggest a minor modification? I
believe that the issue is that if Falcon gets the same randomized hash twice, and then uses
different coins in the ffSampling to generate signatures, Bad Things happen.

If that is the case, the obvious approach (and Chris, please correct me if I missed something)
would be to use a RFC-6979 style approach; take the randomized hash and some secret data
(from the private key), and use that the generate the random coins for ffSampling, perhaps
something as simple as SHAKE(private_key || hash). That way, if you somehow do come up
with the same randomized hash value because of an entropy failure, you’ll generate identical
signatures, which is safe.

Now, this isn’t perfect – if someone manages to do a fault attack on the deterministic coin
generation, that’d still leak the key, and that’d be hard to detect. That may be enough to kill
the idea in the HSM/third party hashing scenario. I believe it still makes sense if the same
device does the entire Falcon operation (because it avoids a potential pitfall on poor entropy)

One might claim that the single-device scenario doesn’t really need it, because the same rbg
generates random bits for both the randomized hash and ffSampling. On the other hand, we
have seen cases (with RSA key generation) where entropy was bad in the first part of the
process (selecting the prime ‘p’) and became better in the second part (selecting the prime ‘q’)
– because it has happened in the past, I believe that the possibility of it happening in the
future is not implausible.

From: pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Christopher J Peikert
Sent: Sunday, September 18, 2022 10:45 PM
To: Mike Ounsworth <Mike.Ounsworth@entrust.com>
Cc: pqc-forum <pqc-forum@list.nist.gov>; pqc@ietf.org; cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium,
FALCON?

Page 1 of 3

mailto:sfluhrer@cisco.com
mailto:pqc-forum@list.nist.gov
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

On Sun, Sep 18, 2022 at 3:42 PM 'Mike Ounsworth' via pqc-forum <pqc-forum@list.nist.gov>
wrote:

We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start with a keyed message
digest – in the case of randomized SPHINCS+ and FALCON, that message digest is keyed
with a random number...

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the same
message. Unless I missed something, I don’t see any other justification given for the use of
keyed message digests (randomized or deterministic).

For Falcon in particular, there is a much more essential reason for "keying" the hash by a
random number: releasing two different signatures for the same hash digest breaks the
security reduction, and likely has very bad practical consequences as well. Note that the
"core" signing procedure -- given a hash digest, output a signature -- is randomized, so
different runs on the same digest will tend to produce different signatures.

Randomized hashing ensures that the same digest essentially never reoccurs (assuming
quality randomness), even when signing the same message multiple times. See Section 2.2.2
of the Falcon spec for further details.

"Derandomizing" the signing procedure is another approach that may be suitable in some
(but not all) scenarios. We have designed and implemented a version of this approach as a
"thin wrapper" around the Falcon API; see the specification for the motivation, details, and
caveats. Signatures produced using this deterministic method can easily be transformed into
ones that are accepted by a verifier who expects randomized ones (but not vice versa). But
due to this compatibility, our approach has the same issues as randomized Falcon when it
comes to externalized hashing.

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

This looks right to me, though it's not clear how much of a benefit this really is. For example,
Falcon's security analysis models the hash function as a "random oracle," which is an even
stronger assumption than collision resistance.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 2 of 3

mailto:pqc-forum@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-sign.info%2Ffalcon.pdf&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca0dad3d60d334e44e35208da9b0708aa%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992751788497481%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=thh3DnemlkmsiSt3PWkfrUX%2BxS3H0re2b%2BobarkPG%2Fo%3D&reserved=0
https://github.com/algorand/falcon
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? ... For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which, at
least for FIPS validation, is probably a “No”.

Unfortunately, the "dream" goal of externalized, deterministic, stateless hashing inherently
requires collision resistance (of that external hash function): the adversary knows the
function, so it can attempt to find collisions in it. Any valid signature for one of the colliding
messages is inherently also a valid signature for the other colliding message.

One remark is that, when modeling the hash function as a random oracle, it is not strictly
necessary that the "random" value actually be random -- it is enough that it never be repeated
(at least not for repeated signings of the same message under the same key). In this sense, it
need only be a "nonce" in the true sense of the word: a Number used only ONCE.

So, if there is a way to generate a true nonce outside the cryptographic module, perhaps that
can be used. However, if the nonce is fairly predictable then we shouldn't expect to get the
above-noted benefits of randomization (whatever they may be). And this is not even getting
into the serious misuse risks of an API that allows the caller to set the nonce.

Given all this, to me it seems that (for Falcon at least) the best way to externalize hashing of
huge data is through some extra "envelope" layer that pre-hashes the data in a suitable way,
then signs the result as if it were the true message. One can then focus on the security
properties of the envelope.

Sincerely yours in cryptography,

Chris

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com.

Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Christopher Peikert <christopher.peikert@algorand.com> via CFRG <cfrg-bounces@irtf.org>
To: Scott Fluhrer (sfluhrer) <sfluhrer=40cisco.com@dmarc.ietf.org>
CC: pqc@ietf.org, pqc-forum <pqc-forum@list.nist.gov>, cfrg@irtf.org, Christopher J Peikert

<cpeikert@alum.mit.edu>
Subject: Re: [CFRG] [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium,

FALCON?
Date: Tuesday, September 20, 2022 09:10:30 AM ET
Attachments: ATT00001.txt

On Tue, Sep 20, 2022 at 8:52 AM Scott Fluhrer (sfluhrer)
<sfluhrer=40cisco.com@dmarc.ietf.org> wrote:

If Falcon has an issue with bad entropy during signing, might I suggest a minor
modification? I believe that the issue is that if Falcon gets the same randomized hash twice,
and then uses different coins in the ffSampling to generate signatures, Bad Things happen.

That's correct.

If that is the case, the obvious approach (and Chris, please correct me if I missed something)
would be to use a RFC-6979 style approach; take the randomized hash and some secret
data (from the private key), and use that the generate the random coins for ffSampling,
perhaps something as simple as SHAKE(private_key || hash). That way, if you somehow do
come up with the same randomized hash value because of an entropy failure, you’ll
generate identical signatures, which is safe.

This is the "derandomization" approach we take in the variant I previously mentioned; see
here.

Note that this approach requires care even in "normal" usage scenarios. In particular, re-
generating the same random coins still might *not* always guarantee the same output:
floating-point operations can yield slightly different results in different implementations, as
can different versions of the sampling algorithm itself.

For the latter issue, our variant includes a "salt version" that should be changed if/when the
sampling algorithm changes.

For the former issue, the Falcon reference implementation happily includes a "floating-point
emulation" mode, which is designed to ensure consistent results across platforms (and is
much faster than you might think!). See Section 3.4 of the above-linked document for many
details.

Page 1 of 4

mailto:christopher.peikert@algorand.com
mailto:cfrg-bounces@irtf.org
mailto:sfluhrer=40cisco.com@dmarc.ietf.org
mailto:pqc@ietf.org
mailto:pqc-forum@list.nist.gov
mailto:cfrg@irtf.org
mailto:cpeikert@alum.mit.edu

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

mailto:40cisco.com@dmarc.ietf.org
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

Sincerely yours in cryptography,

Chris

Now, this isn’t perfect – if someone manages to do a fault attack on the deterministic coin
generation, that’d still leak the key, and that’d be hard to detect. That may be enough to kill
the idea in the HSM/third party hashing scenario. I believe it still makes sense if the same
device does the entire Falcon operation (because it avoids a potential pitfall on poor
entropy)

One might claim that the single-device scenario doesn’t really need it, because the same rbg
generates random bits for both the randomized hash and ffSampling. On the other hand,
we have seen cases (with RSA key generation) where entropy was bad in the first part of the
process (selecting the prime ‘p’) and became better in the second part (selecting the prime
‘q’) – because it has happened in the past, I believe that the possibility of it happening in the
future is not implausible.

From:pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Christopher J
Peikert
Sent: Sunday, September 18, 2022 10:45 PM
To: Mike Ounsworth <Mike.Ounsworth@entrust.com>
Cc: pqc-forum <pqc-forum@list.nist.gov>; pqc@ietf.org; cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+,
Dilithium, FALCON?

On Sun, Sep 18, 2022 at 3:42 PM 'Mike Ounsworth' via pqc-forum <pqc-
forum@list.nist.gov> wrote:

We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start with a keyed
message digest – in the case of randomized SPHINCS+ and FALCON, that message digest
is keyed with a random number...

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the
same message. Unless I missed something, I don’t see any other justification given for
the use of keyed message digests (randomized or deterministic).

For Falcon in particular, there is a much more essential reason for "keying" the hash by a
random number: releasing two different signatures for the same hash digest breaks the

Christopher Peikert <christopher.peikert@algorand.com>

Page 2 of 4

mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:Mike.Ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

security reduction, and likely has very bad practical consequences as well. Note that the
"core" signing procedure -- given a hash digest, output a signature -- is randomized, so
different runs on the same digest will tend to produce different signatures.

Randomized hashing ensures that the same digest essentially never reoccurs (assuming
quality randomness), even when signing the same message multiple times. See Section
2.2.2 of the Falcon spec for further details.

"Derandomizing" the signing procedure is another approach that may be suitable in some
(but not all) scenarios. We have designed and implemented a version of this approach as a
"thin wrapper" around the Falcon API; see the specification for the motivation, details, and
caveats. Signatures produced using this deterministic method can easily be transformed
into ones that are accepted by a verifier who expects randomized ones (but not vice versa).
But due to this compatibility, our approach has the same issues as randomized Falcon
when it comes to externalized hashing.

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

This looks right to me, though it's not clear how much of a benefit this really is. For
example, Falcon's security analysis models the hash function as a "random oracle," which
is an even stronger assumption than collision resistance.

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? ... For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which,
at least for FIPS validation, is probably a “No”.

Unfortunately, the "dream" goal of externalized, deterministic, stateless hashing inherently
requires collision resistance (of that external hash function): the adversary knows the
function, so it can attempt to find collisions in it. Any valid signature for one of the colliding
messages is inherently also a valid signature for the other colliding message.

One remark is that, when modeling the hash function as a random oracle, it is not strictly
necessary that the "random" value actually be random -- it is enough that it never be

Christopher Peikert <christopher.peikert@algorand.com>

Page 3 of 4

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-sign.info%2Ffalcon.pdf&data=05%7C01%7Cquynh.dang%40nist.gov%7C8575ee42787d4476c98d08da9b097c74%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992762304219960%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Mg8DqXnRLXVIl4bMrFp0Rsi4UzA3sI0k8pRw4M6uY4E%3D&reserved=0
https://github.com/algorand/falcon
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

repeated (at least not for repeated signings of the same message under the same key). In
this sense, it need only be a "nonce" in the true sense of the word: a Number used only
ONCE.

So, if there is a way to generate a true nonce outside the cryptographic module, perhaps
that can be used. However, if the nonce is fairly predictable then we shouldn't expect to
get the above-noted benefits of randomization (whatever they may be). And this is not
even getting into the serious misuse risks of an API that allows the caller to set the nonce.

Given all this, to me it seems that (for Falcon at least) the best way to externalize hashing
of huge data is through some extra "envelope" layer that pre-hashes the data in a suitable
way, then signs the result as if it were the true message. One can then focus on the
security properties of the envelope.

Sincerely yours in cryptography,

Chris

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com.

CFRG mailing list
CFRG@irtf.org
https://www.irtf.org/mailman/listinfo/cfrg

Christopher Peikert <christopher.peikert@algorand.com>

Page 4 of 4

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
mailto:CFRG@irtf.org
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.dang%40nist.gov%7C8575ee42787d4476c98d08da9b097c74%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992762304219960%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Z%2Fhn72Z2P0ncVm6tgGplcqj%2BfCnsw%2BWRHx%2FE0tpxEUs%3D&reserved=0

From: Christopher J Peikert <cpeikert@alum.mit.edu> via pqc-forum@list.nist.gov
To: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>
CC: Mike Ounsworth <mike.ounsworth@entrust.com>, pqc-forum <pqc-forum@list.nist.gov>,

pqc@ietf.org, cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Tuesday, September 20, 2022 09:18:48 AM ET

(Re-posting to pqc-forum from a different address, due to list-membership fussiness.
Apologies for any duplication in your inbox.)

On Tue, Sep 20, 2022 at 8:52 AM 'Scott Fluhrer (sfluhrer)' via pqc-forum <pqc-
forum@list.nist.gov> wrote:

If Falcon has an issue with bad entropy during signing, might I suggest a minor
modification? I believe that the issue is that if Falcon gets the same randomized hash twice,
and then uses different coins in the ffSampling to generate signatures, Bad Things happen.

That's correct.

If that is the case, the obvious approach (and Chris, please correct me if I missed something)
would be to use a RFC-6979 style approach; take the randomized hash and some secret
data (from the private key), and use that the generate the random coins for ffSampling,
perhaps something as simple as SHAKE(private_key || hash). That way, if you somehow do
come up with the same randomized hash value because of an entropy failure, you’ll
generate identical signatures, which is safe.

This is the "derandomization" approach we take in the variant I previously mentioned; see
here.

Note that this approach requires care even in "normal" usage scenarios. In particular, re-
generating the same random coins still might *not* always guarantee the same output:
floating-point operations can yield slightly different results in different implementations, as
can different versions of the sampling algorithm itself.

For the latter issue, our variant includes a "salt version" that should be changed if/when the
sampling algorithm changes.

Page 1 of 5

mailto:cpeikert@alum.mit.edu
mailto:pqc-forum@list.nist.gov
mailto:sfluhrer@cisco.com
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

For the former issue, the Falcon reference implementation happily includes a "floating-point
emulation" mode, which is designed to ensure consistent results across platforms (and is
much faster than you might think!). See Section 3.4 of the above-linked document for many
details.

Sincerely yours in cryptography,

Chris

Now, this isn’t perfect – if someone manages to do a fault attack on the deterministic coin
generation, that’d still leak the key, and that’d be hard to detect. That may be enough to kill
the idea in the HSM/third party hashing scenario. I believe it still makes sense if the same
device does the entire Falcon operation (because it avoids a potential pitfall on poor
entropy)

One might claim that the single-device scenario doesn’t really need it, because the same rbg
generates random bits for both the randomized hash and ffSampling. On the other hand,
we have seen cases (with RSA key generation) where entropy was bad in the first part of the
process (selecting the prime ‘p’) and became better in the second part (selecting the prime
‘q’) – because it has happened in the past, I believe that the possibility of it happening in the
future is not implausible.

From:pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Christopher J
Peikert
Sent: Sunday, September 18, 2022 10:45 PM
To: Mike Ounsworth <Mike.Ounsworth@entrust.com>
Cc: pqc-forum <pqc-forum@list.nist.gov>; pqc@ietf.org; cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+,
Dilithium, FALCON?

On Sun, Sep 18, 2022 at 3:42 PM 'Mike Ounsworth' via pqc-forum <pqc-
forum@list.nist.gov> wrote:

We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start with a keyed
message digest – in the case of randomized SPHINCS+ and FALCON, that message digest
is keyed with a random number...

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 2 of 5

mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:Mike.Ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

same message. Unless I missed something, I don’t see any other justification given for
the use of keyed message digests (randomized or deterministic).

For Falcon in particular, there is a much more essential reason for "keying" the hash by a
random number: releasing two different signatures for the same hash digest breaks the
security reduction, and likely has very bad practical consequences as well. Note that the
"core" signing procedure -- given a hash digest, output a signature -- is randomized, so
different runs on the same digest will tend to produce different signatures.

Randomized hashing ensures that the same digest essentially never reoccurs (assuming
quality randomness), even when signing the same message multiple times. See Section
2.2.2 of the Falcon spec for further details.

"Derandomizing" the signing procedure is another approach that may be suitable in some
(but not all) scenarios. We have designed and implemented a version of this approach as a
"thin wrapper" around the Falcon API; see the specification for the motivation, details, and
caveats. Signatures produced using this deterministic method can easily be transformed
into ones that are accepted by a verifier who expects randomized ones (but not vice versa).
But due to this compatibility, our approach has the same issues as randomized Falcon
when it comes to externalized hashing.

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

This looks right to me, though it's not clear how much of a benefit this really is. For
example, Falcon's security analysis models the hash function as a "random oracle," which
is an even stronger assumption than collision resistance.

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? ... For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which,
at least for FIPS validation, is probably a “No”.

Unfortunately, the "dream" goal of externalized, deterministic, stateless hashing inherently
requires collision resistance (of that external hash function): the adversary knows the

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 3 of 5

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-sign.info%2Ffalcon.pdf&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C459a78b1247d4e269f9e08da9b0aa584%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992767281479989%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=JL7sTvSbbyvpJO6g9lXd7ZIQLLyaM4fi3UbUlFtw5rM%3D&reserved=0
https://github.com/algorand/falcon
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

function, so it can attempt to find collisions in it. Any valid signature for one of the colliding
messages is inherently also a valid signature for the other colliding message.

One remark is that, when modeling the hash function as a random oracle, it is not strictly
necessary that the "random" value actually be random -- it is enough that it never be
repeated (at least not for repeated signings of the same message under the same key). In
this sense, it need only be a "nonce" in the true sense of the word: a Number used only
ONCE.

So, if there is a way to generate a true nonce outside the cryptographic module, perhaps
that can be used. However, if the nonce is fairly predictable then we shouldn't expect to
get the above-noted benefits of randomization (whatever they may be). And this is not
even getting into the serious misuse risks of an API that allows the caller to set the nonce.

Given all this, to me it seems that (for Falcon at least) the best way to externalize hashing
of huge data is through some extra "envelope" layer that pre-hashes the data in a suitable
way, then signs the result as if it were the true message. One can then focus on the
security properties of the envelope.

Sincerely yours in cryptography,

Chris

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 4 of 5

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer

CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outl
ook.com.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CACOo0QhYA04Yhu6eCyd5PaUBjGSdEnU9wtYc6YtF7b%2BPx%2B1x%3DA%40mail.gmail.com.

Christopher J Peikert <cpeikert@alum.mit.edu>

Page 5 of 5

https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QhYA04Yhu6eCyd5PaUBjGSdEnU9wtYc6YtF7b%2BPx%2B1x%3DA%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QhYA04Yhu6eCyd5PaUBjGSdEnU9wtYc6YtF7b%2BPx%2B1x%3DA%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QhYA04Yhu6eCyd5PaUBjGSdEnU9wtYc6YtF7b%2BPx%2B1x%3DA%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Scott Fluhrer (sfluhrer) <sfluhrer@cisco.com>
CC: Christopher J Peikert <cpeikert@alum.mit.edu>, Mike Ounsworth

<mike.ounsworth@entrust.com>, pqc-forum <pqc-forum@list.nist.gov>, pqc@ietf.org,
cfrg@irtf.org

Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Tuesday, September 20, 2022 12:35:09 PM ET

+1

We went through all this with RFC-6879 and that is work we can and should re-use. Except that I would
like to have a combination of the rigid approach AND also include a random nonce.

Having dug into the double spending / malleability issue that allegedly sunk MtGox, I am pretty sure that
relying on signatures being deterministic is an anti-pattern. There is so much going on with a signature
scheme that relying on the outputs being deterministic seems to be a step too far. While RFC-6879
specifies deterministic signature, there is no way to verify compliance, i.e. that a given signature is
deterministic unless you have the private key.

So the series of APIs that I would like to see are

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]? attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

So the code using this approach is going to be (mostly) calling SignData to request an envelope in COSE,
CMS/PKCS#7/OpenPGP etc format.

The specs for the envelope format specify how to marshall the data to produce a byte sequence that is
the manifest.

The common specification for public key signing specifies how to go from (digest, digestAlgorithm,
attributes) to a manifest and from (nonce, manifest) to signatureInput.

The individual signature specifications specify how to go from (signatureInput, key) to the signature data.

Page 1 of 6

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:sfluhrer@cisco.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

One of the core goals here is to not just prevent bad things happening, but to make it as easy as possible
to verify compliance. We have many degrees of freedom here. We have a lot of envelope formats, a lot of
digest algorithms and a lot of signature algorithms. And there is the possibility of mix-n-match attacks
across each of these domains. Each part looks simple but the composition of those parts is not. And we
want to get to apply formal methods to prove certain properties of the result. I am not up to speed with
the modern formal methods tools available these days which we didn't have back when that was my thing
but I can still decompose problems to the point where formal approaches are feasible.

This approach limits the variation introduced by the choice of envelope format to the SignData method.
Everything from that point on is fixed. It also limits the scope of the signature algorithm designers to
SignInner. The implementation of SignDigest, SignManifest and SignNonce are each fixed and common
across all envelope formats and all signature algorithms. One consequence of this approach being that it
may be possible to convert a COSE signature to a CMS signature provided that the verifier can parse any
additional attributes provided.

A HSM would only expose the SignDigest method for private keys held internally. The device itself would
probably need to expose the SignNonce and SignInner APIs for conformance testing purposes but
allowing those methods to be used on protected keys is obviously prohibited. Specifying the conformance
testing API in this fashion allows a test to be added to check that attempting to use a non-compliant
method on a protected key is refused.

One consequence of this approach is that we have to agree what scheme is used to represent digest
algorithm IDs in the construction of the manifest. It seems pretty clear to me that this has to be ASN.1
OIDs because that is what the only party which really cares about the ID representation cares about using.
My code reduces all the ASN.1 OIDS to byte sequences before the compiler gets to see them so I don't
care.

We can discuss how to construct the manifest and nonced manifest separately. I don't much care and the
only people who are likely to really care are the people attempting to construct formal proofs. So while I
would likely implement in DER if it was me doing it today, that is not really an implementation decision, it
is a verification driven decision.

We should probably drop an algorithmID in for the signing algorithm as well. That is probably best added
at the same time as the nonce is added in SignInner since that allows code to generate a single manifest
and then reuse it across multiple signature algorithms. Since I don't have access to a threshold PQC
algorithm, all my PQC signatures are going to be hybrid systems using Ed448 + Dilithium for quite a while.

On Tue, Sep 20, 2022 at 8:52 AM 'Scott Fluhrer (sfluhrer)' via pqc-forum <pqc-
forum@list.nist.gov> wrote:

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 6

mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

If Falcon has an issue with bad entropy during signing, might I suggest a minor
modification? I believe that the issue is that if Falcon gets the same randomized hash twice,
and then uses different coins in the ffSampling to generate signatures, Bad Things happen.

If that is the case, the obvious approach (and Chris, please correct me if I missed something)
would be to use a RFC-6979 style approach; take the randomized hash and some secret
data (from the private key), and use that the generate the random coins for ffSampling,
perhaps something as simple as SHAKE(private_key || hash). That way, if you somehow do
come up with the same randomized hash value because of an entropy failure, you’ll
generate identical signatures, which is safe.

Now, this isn’t perfect – if someone manages to do a fault attack on the deterministic coin
generation, that’d still leak the key, and that’d be hard to detect. That may be enough to kill
the idea in the HSM/third party hashing scenario. I believe it still makes sense if the same
device does the entire Falcon operation (because it avoids a potential pitfall on poor
entropy)

One might claim that the single-device scenario doesn’t really need it, because the same rbg
generates random bits for both the randomized hash and ffSampling. On the other hand,
we have seen cases (with RSA key generation) where entropy was bad in the first part of the
process (selecting the prime ‘p’) and became better in the second part (selecting the prime
‘q’) – because it has happened in the past, I believe that the possibility of it happening in the
future is not implausible.

From:pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Christopher J
Peikert
Sent: Sunday, September 18, 2022 10:45 PM
To: Mike Ounsworth <Mike.Ounsworth@entrust.com>
Cc: pqc-forum <pqc-forum@list.nist.gov>; pqc@ietf.org; cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+,
Dilithium, FALCON?

On Sun, Sep 18, 2022 at 3:42 PM 'Mike Ounsworth' via pqc-forum <pqc-
forum@list.nist.gov> wrote:

We notice that SPHINCS+, CRYSTALS-Dilithium, and FALCON all start with a keyed
message digest – in the case of randomized SPHINCS+ and FALCON, that message digest
is keyed with a random number...

Phillip Hallam-Baker <phill@hallambaker.com>

Page 3 of 6

mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:Mike.Ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

A quick skim through the submission documents for the three schemes shows that the
message randomization is intended as a protection against differential and fault attacks
since the traces would not be repeatable between subsequent signatures even of the
same message. Unless I missed something, I don’t see any other justification given for
the use of keyed message digests (randomized or deterministic).

For Falcon in particular, there is a much more essential reason for "keying" the hash by a
random number: releasing two different signatures for the same hash digest breaks the
security reduction, and likely has very bad practical consequences as well. Note that the
"core" signing procedure -- given a hash digest, output a signature -- is randomized, so
different runs on the same digest will tend to produce different signatures.

Randomized hashing ensures that the same digest essentially never reoccurs (assuming
quality randomness), even when signing the same message multiple times. See Section
2.2.2 of the Falcon spec for further details.

"Derandomizing" the signing procedure is another approach that may be suitable in some
(but not all) scenarios. We have designed and implemented a version of this approach as a
"thin wrapper" around the Falcon API; see the specification for the motivation, details, and
caveats. Signatures produced using this deterministic method can easily be transformed
into ones that are accepted by a verifier who expects randomized ones (but not vice versa).
But due to this compatibility, our approach has the same issues as randomized Falcon
when it comes to externalized hashing.

But it seems to me that, especially the randomized version, keyed message digests also
protect against yet-to-be-discovered collision attacks in the underlying hash function
because an attacker cannot pre-compute against an `r` chosen at signing time (ie the
signature scheme’s security may not need to rely on the hash function being collision
resistant).

This looks right to me, though it's not clear how much of a benefit this really is. For
example, Falcon's security analysis models the hash function as a "random oracle," which
is an even stronger assumption than collision resistance.

Question:

So what is the safe way to externally pre-hash messages for these schemes in order to
achieve a hash-then-sign scheme? ... For randomized versions, that would mean having
access to a cryptographic RNG value outside the cryptographic module boundary, which,
at least for FIPS validation, is probably a “No”.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 4 of 6

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffalcon-sign.info%2Ffalcon.pdf&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C7f1cc28683724d717a0508da9b26130e%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637992885089222419%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=7FsYIVnMOCKwfcTMHIL%2BzLJCrb77K88V8O6wgMqGdv4%3D&reserved=0
https://github.com/algorand/falcon
https://github.com/algorand/falcon/blob/main/falcon-det.pdf

Unfortunately, the "dream" goal of externalized, deterministic, stateless hashing inherently
requires collision resistance (of that external hash function): the adversary knows the
function, so it can attempt to find collisions in it. Any valid signature for one of the colliding
messages is inherently also a valid signature for the other colliding message.

One remark is that, when modeling the hash function as a random oracle, it is not strictly
necessary that the "random" value actually be random -- it is enough that it never be
repeated (at least not for repeated signings of the same message under the same key). In
this sense, it need only be a "nonce" in the true sense of the word: a Number used only
ONCE.

So, if there is a way to generate a true nonce outside the cryptographic module, perhaps
that can be used. However, if the nonce is fairly predictable then we shouldn't expect to
get the above-noted benefits of randomization (whatever they may be). And this is not
even getting into the serious misuse risks of an API that allows the caller to set the nonce.

Given all this, to me it seems that (for Falcon at least) the best way to externalize hashing
of huge data is through some extra "envelope" layer that pre-hashes the data in a suitable
way, then signs the result as if it were the true message. One can then focus on the
security properties of the envelope.

Sincerely yours in cryptography,

Chris

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pqc-forum/
CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/

Phillip Hallam-Baker <phill@hallambaker.com>

Page 5 of 6

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0QjNnEimk7U6c%2BBuNzJEFh%3DyhrvNthi3qfgj1jkcTnZmCQ%40mail.gmail.com?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer

pqc-forum/
CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outl
ook.com.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CAMm%2BLwi6PjbadJJyZFp1-
yQ8cMNtKvOkZom%3DhNonr%2BcEC6X_tw%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 6 of 6

https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CH0PR11MB5444E50C9F95D88360C40A47C14C9%40CH0PR11MB5444.namprd11.prod.outlook.com?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi6PjbadJJyZFp1-yQ8cMNtKvOkZom%3DhNonr%2BcEC6X_tw%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi6PjbadJJyZFp1-yQ8cMNtKvOkZom%3DhNonr%2BcEC6X_tw%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi6PjbadJJyZFp1-yQ8cMNtKvOkZom%3DhNonr%2BcEC6X_tw%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Derek Atkins <datkins@veridify.com> via pqc-forum@list.nist.gov
To: sfluhrer@cisco.com, phill@hallambaker.com
CC: cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,

cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Tuesday, September 20, 2022 01:03:39 PM ET

Phill,

On Tue, 2022-09-20 at 12:34 -0400, Phillip Hallam-Baker wrote:

[snip]

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]? attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

So the code using this approach is going to be (mostly) calling SignData to request an envelope in COSE,
CMS/PKCS#7/OpenPGP etc format.

[snip]

A HSM would only expose the SignDigest method for private keys held internally. The device itself
would probably need to expose the SignNonce and SignInner APIs for conformance testing purposes
but allowing those methods to be used on protected keys is obviously prohibited. Specifying the
conformance testing API in this fashion allows a test to be added to check that attempting to use a non-
compliant method on a protected key is refused.

Just to make sure I'm not confused, is this a typo, I would have expected you to say "An HSM
only exposes the SignManifest method". Am I missing something?

-derek

--

Page 1 of 2

mailto:datkins@veridify.com
mailto:pqc-forum@list.nist.gov
mailto:sfluhrer@cisco.com
mailto:phill@hallambaker.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

Derek Atkins
Chief Technology Officer
Veridify Security - Securing the Internet of Things®

Office: 203.227.3151 x1343
Direct: 617.623.3745
Mobile: 617.290.5355
Email: DAtkins@Veridify.com

This email message may contain confidential, proprietary and / or legally privileged information
and intended only for the use of the intended recipient(s) and others specifically authorized. Any
disclosure, dissemination, copying, distribution or use of the information contained in this email
message, including any attachments, to or by anyone other than the intended recipient is strictly
prohibited. If you received this in error, please immediately advise the sender by reply email or at
the telephone number above, and then delete, shred, or otherwise dispose of this message.

Derek Atkins <datkins@veridify.com>

Page 2 of 2

mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com

From: Brent Kimberley <brent.kimberley@durham.ca> via pqc-forum <pqc-forum@list.nist.gov>
To: Derek Atkins <datkins@veridify.com>, sfluhrer@cisco.com, phill@hallambaker.com
CC: cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,

cfrg@irtf.org
Subject: RE: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Tuesday, September 20, 2022 05:28:53 PM ET

Likewise, one might want to dive into HSM reliability, availability, and serviceability.

From: pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Derek Atkins
Sent: September 20, 2022 1:03 PM
To: sfluhrer@cisco.com; phill@hallambaker.com
Cc: cpeikert@alum.mit.edu; Mike.Ounsworth@entrust.com; pqc-forum@list.nist.gov;
pqc@ietf.org; cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium,
FALCON?

Phill,

On Tue, 2022-09-20 at 12:34 -0400, Phillip Hallam-Baker wrote:

[snip]

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]?
attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

So the code using this approach is going to be (mostly) calling SignData to request an
envelope in COSE, CMS/PKCS#7/OpenPGP etc format.

Page 1 of 3

mailto:brent.kimberley@durham.ca
mailto:pqc-forum@list.nist.gov
mailto:datkins@veridify.com
mailto:sfluhrer@cisco.com
mailto:phill@hallambaker.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org

[snip]

A HSM would only expose the SignDigest method for private keys held internally. The device
itself would probably need to expose the SignNonce and SignInner APIs for conformance
testing purposes but allowing those methods to be used on protected keys is obviously
prohibited. Specifying the conformance testing API in this fashion allows a test to be added
to check that attempting to use a non-compliant method on a protected key is refused.

Just to make sure I'm not confused, is this a typo, I would have expected you to say "An HSM
only exposes the SignManifest method". Am I missing something?

-derek

--

Derek Atkins
Chief Technology Officer

Veridify Security - Securing the Internet of Things®

Office: 203.227.3151 x1343
Direct: 617.623.3745
Mobile: 617.290.5355
Email: DAtkins@Veridify.com

This email message may contain confidential, proprietary and / or legally privileged information
and intended only for the use of the intended recipient(s) and others specifically authorized. Any
disclosure, dissemination, copying, distribution or use of the information contained in this email
message, including any attachments, to or by anyone other than the intended recipient is strictly
prohibited. If you received this in error, please immediately advise the sender by reply email or at
the telephone number above, and then delete, shred, or otherwise dispose of this message.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/fdc56eb1ab6ce61cb6a43a7917cc17863ac16d0c.camel%40Veridify.com.

Brent Kimberley <brent.kimberley@durham.ca>

Page 2 of 3

mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2Ffdc56eb1ab6ce61cb6a43a7917cc17863ac16d0c.camel%2540Veridify.com%3Futm_medium%3Demail%26utm_source%3Dfooter&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C3bf1c86526044ee33a0a08da9b4f1bed%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637993061329451292%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=PKuB%2BCsWV5jvTHrScruk6Xszvo8Ud0HU1Xu9NBUGfRg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2Ffdc56eb1ab6ce61cb6a43a7917cc17863ac16d0c.camel%2540Veridify.com%3Futm_medium%3Demail%26utm_source%3Dfooter&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C3bf1c86526044ee33a0a08da9b4f1bed%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637993061329451292%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=PKuB%2BCsWV5jvTHrScruk6Xszvo8Ud0HU1Xu9NBUGfRg%3D&reserved=0

THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN
INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM
DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have
been waived. If you are not the intended recipient, you are hereby notified that any review, re-
transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in
reliance on or other use of this communication is strictly prohibited. If you are not the
intended recipient and have received this message in error, please notify me by return e-mail
and delete or destroy all copies of this message.

Brent Kimberley <brent.kimberley@durham.ca>

Page 3 of 3

From: Hubert Kario <hkario@redhat.com> via CFRG <cfrg-bounces@irtf.org>
To: Phillip Hallam-Baker <phill@hallambaker.com>
CC: pqc@ietf.org, pqc-forum <pqc-forum@list.nist.gov>, cfrg@irtf.org, Mike Ounsworth

<mike.ounsworth=40entrust.com@dmarc.ietf.org>
Subject: Re: [CFRG] [Pqc] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Thursday, September 22, 2022 07:58:36 AM ET

On Monday, 19 September 2022 23:23:36 CEST, Phillip Hallam-Baker wrote:

> On Mon, Sep 19, 2022 at 9:26 AM Soatok Dreamseeker

> <soatok.dhole@gmail.com> wrote:

> Is it ok to take m’ = SHA256(m) and then sign m’

>

> My preference would be to consider three design constraints:

>

> 1. Domain separation

> 2. Exclusive ownership

> 3. Context binding

>

> I agree with those concerns, but...

>

> Seems to me that there is a layering issue here and two sets of

> concerns driving a very similar technical control on both sides

> of the abstraction boundary where these are probably better

> addressed in one place.

>

> And we are getting a lot of abstract reasoning that is being

> justified with technical terms whose meaning is not necessarily

> shared by all the people involved.

>

> So lets have a concrete example. I have a 5TB hard drive on it.

> I want to create a signature on the image taken by the

> forensics tool and it is 2TB after compression. As far as the

> application is concerned, that is the signature payload. That is

> not necessarily the input to the signature.

>

> A signature over the raw payload is has never been very useful

> on its own. There has been data bound into the signature since

Page 1 of 3

mailto:hkario@redhat.com
mailto:cfrg-bounces@irtf.org
mailto:phill@hallambaker.com
mailto:pqc@ietf.org
mailto:pqc-forum@list.nist.gov
mailto:cfrg@irtf.org
mailto:mike.ounsworth=40entrust.com@dmarc.ietf.org

> PKCS#1 which has always bound the digest algorithm into the sig

> to prevent digest substitution attacks.

>

> The question is not whether you want to tie in additional data

> but what data and where. In the case of some of the PDQ

> algorithms we have the question of whether to make the signature

> deterministic or not and if so, where that happens

>

> If the core signature algorithm is s(m,k) where k is the key

> and we want to include a nonce, do we want to create the

> signature over:

>

> A: s (payload + meta + nonce, k)

> B: s (H(payload) + meta + nonce, k)

> C: s (H(H(payload) + meta1) + meta2 + nonce, k)

>

> The best performance wise is B since we only end up doing one

> extra hash. A is clearly ludicrous and isn't going to happen no

> matter what because a HSM likely doesn't have the bandwidth to

> process that amount of data.

I don't understand how this is a problem.

You can have a cryptographic module defined as the HSM + PKCS#11 driver,

then the hashing can happen in the driver, in software, in a way that

ensures

that the HSM signs only the data that was hashed by the driver, not by

software

external to the cryptographic module.

PKCS#11 already defines a C_SignInit/C_SignUpdate/C_SignFinal API for the

combined hash+sign operation.

Or, you can define the cryptographic module interface as the PCIe connector

(other connectors are available). Then FIPS 140-3 already requires

that the module ensures that the the signature was made over a hash

calculated

Hubert Kario <hkario@redhat.com>

Page 2 of 3

with a FIPS certified module, so in practice you already have to push that

data over the PCIe connector.

--

Regards,

Hubert Kario

Principal Quality Engineer, RHEL Crypto team

Web: https://gcc02.safelinks.protection.outlook.com/?

url=http%3A%2F%2Fwww.cz.redhat.com%2F&data=05%7C01%7Cquynh.dang%40nist.gov%7C323e

0d87598c495a5ae908da9c91c485%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C63799444716

8499923%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiL

CJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2By%2BrbwWl10tk%2F4Zqaw7AsvbZiX1IVSnZRrwEA8q

43dY%3D&reserved=0

Red Hat Czech s.r.o., Purkyňova 99/71, 612 45, Brno, Czech Republic

CFRG mailing list

CFRG@irtf.org

https://gcc02.safelinks.protection.outlook.com/?

url=https%3A%2F%2Fwww.irtf.org%2Fmailman%2Flistinfo%2Fcfrg&data=05%7C01%7Cquynh.d

ang%40nist.gov%7C323e0d87598c495a5ae908da9c91c485%7C2ab5d82fd8fa4797a93e054655c61dec%

7C1%7C0%7C637994447168499923%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2lu

MzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0rgfJ9rWSYhZctE9EUHUh142

f44%2FZAU5TcqfUfy9q4Q%3D&reserved=0

Hubert Kario <hkario@redhat.com>

Page 3 of 3

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Derek Atkins <datkins@veridify.com>
CC: sfluhrer@cisco.com, cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-

forum@list.nist.gov, pqc@ietf.org, cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Wednesday, September 28, 2022 11:49:34 AM ET

On Tue, Sep 20, 2022 at 1:03 PM Derek Atkins <datkins@veridify.com> wrote:

Phill,

On Tue, 2022-09-20 at 12:34 -0400, Phillip Hallam-Baker wrote:

[snip]

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]? attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

So the code using this approach is going to be (mostly) calling SignData to request an envelope in
COSE, CMS/PKCS#7/OpenPGP etc format.

[snip]

A HSM would only expose the SignDigest method for private keys held internally. The device itself
would probably need to expose the SignNonce and SignInner APIs for conformance testing purposes
but allowing those methods to be used on protected keys is obviously prohibited. Specifying the
conformance testing API in this fashion allows a test to be added to check that attempting to use a
non-compliant method on a protected key is refused.

Just to make sure I'm not confused, is this a typo, I would have expected you to say "An HSM
only exposes the SignManifest method". Am I missing something?

Page 1 of 2

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:datkins@veridify.com
mailto:sfluhrer@cisco.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:datkins@veridify.com

An HSM only exposes the SignManifest method in FIPS mode. If you put it in FIPS Mode, it can never be
put in test mode and can never give the debug information or provide non-FIPS functions.

We used to spray the Test HSMs yellow with TEST in black so nobody would ever be silly enough to create
a trust chain to 'em.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAMm%2BLwhpLptmAc45ekA%2BGHVmo3qs7qN22xB_5nQFRvueRRy5kg%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 2

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwhpLptmAc45ekA%2BGHVmo3qs7qN22xB_5nQFRvueRRy5kg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwhpLptmAc45ekA%2BGHVmo3qs7qN22xB_5nQFRvueRRy5kg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwhpLptmAc45ekA%2BGHVmo3qs7qN22xB_5nQFRvueRRy5kg%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Derek Atkins <datkins@veridify.com> via pqc-forum@list.nist.gov
To: phill@hallambaker.com
CC: cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,

sfluhrer@cisco.com, cfrg@irtf.org
Subject: Re: [pqc-forum] Design rationale for keyed message digests in SPHINCS+, Dilithium, FALCON?
Date: Wednesday, September 28, 2022 12:11:42 PM ET

Hi,

On Wed, 2022-09-28 at 11:49 -0400, Phillip Hallam-Baker wrote:

On Tue, Sep 20, 2022 at 1:03 PM Derek Atkins <datkins@veridify.com> wrote:

Phill,

On Tue, 2022-09-20 at 12:34 -0400, Phillip Hallam-Baker wrote:

[snip]

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]?
attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

So the code using this approach is going to be (mostly) calling SignData to request an envelope in
COSE, CMS/PKCS#7/OpenPGP etc format.

[snip]

A HSM would only expose the SignDigest method for private keys held internally. The device itself
would probably need to expose the SignNonce and SignInner APIs for conformance testing
purposes but allowing those methods to be used on protected keys is obviously prohibited.

Page 1 of 2

mailto:datkins@veridify.com
mailto:pqc-forum@list.nist.gov
mailto:phill@hallambaker.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:cfrg@irtf.org
mailto:datkins@veridify.com

Specifying the conformance testing API in this fashion allows a test to be added to check that
attempting to use a non-compliant method on a protected key is refused.

Just to make sure I'm not confused, is this a typo, I would have expected you to say "An
HSM only exposes the SignManifest method". Am I missing something?

An HSM only exposes the SignManifest method in FIPS mode. If you put it in FIPS Mode, it can never be
put in test mode and can never give the debug information or provide non-FIPS functions.

We used to spray the Test HSMs yellow with TEST in black so nobody would ever be silly enough to
create a trust chain to 'em.

You still didn't clarify. You originally said "An HSM would only expose the SignDigest method"...
I was questioning whether this was a typo, as I would only expect an HSM to expose
SignManifest.

Can you please clarify?

Thanks,

-derek

--

Derek Atkins
Chief Technology Officer
Veridify Security - Securing the Internet of Things®

Office: 203.227.3151 x1343
Direct: 617.623.3745
Mobile: 617.290.5355
Email: DAtkins@Veridify.com

This email message may contain confidential, proprietary and / or legally privileged information
and intended only for the use of the intended recipient(s) and others specifically authorized. Any
disclosure, dissemination, copying, distribution or use of the information contained in this email
message, including any attachments, to or by anyone other than the intended recipient is strictly
prohibited. If you received this in error, please immediately advise the sender by reply email or at
the telephone number above, and then delete, shred, or otherwise dispose of this message.

Derek Atkins <datkins@veridify.com>

Page 2 of 2

mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com
mailto:DAtkins@SecureRF.com

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Derek Atkins <datkins@veridify.com>
CC: cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,

sfluhrer@cisco.com, cfrg@irtf.org
Subject: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 01:08:36 PM ET

Scroll through my reply to Derek to see the argument. Covert channels to leak RSA keys were absolutely a
thing that occurred in the real world.

The problem with NOBUS (Nobody but US) is that it fails when there is an insider threat. And as recent
events have shown, there are entirely repeatable mechanisms for creating insider threats.

On Wed, Sep 28, 2022 at 12:11 PM Derek Atkins <datkins@veridify.com> wrote:

Hi,

On Wed, 2022-09-28 at 11:49 -0400, Phillip Hallam-Baker wrote:

On Tue, Sep 20, 2022 at 1:03 PM Derek Atkins <datkins@veridify.com> wrote:

Phill,

On Tue, 2022-09-20 at 12:34 -0400, Phillip Hallam-Baker wrote:

[snip]

Outermost -> Innermost

byte[] SignData (byte[] data, PrivateKey key, EnvelopeID envelopeID, byte[]? attributes=null)

byte[] SignDigest (byte[] digest, AlgorithmID digestAlgorithm, PrivateKey key, byte[]?
attributes=null)

----HSM boundary----

byte[] SignManifest (byte[] manifest, PrivateKey key)

byte[] SignNonce (byte[] nonce, byte[] manifest, PrivateKey key)

byte[] SignInner (byte[] signatureInput, PrivateKey key)

Page 1 of 3

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:datkins@veridify.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:cfrg@irtf.org
mailto:datkins@veridify.com
mailto:datkins@veridify.com

So the code using this approach is going to be (mostly) calling SignData to request an envelope
in COSE, CMS/PKCS#7/OpenPGP etc format.

[snip]

A HSM would only expose the SignDigest method for private keys held internally. The device
itself would probably need to expose the SignNonce and SignInner APIs for conformance
testing purposes but allowing those methods to be used on protected keys is obviously
prohibited. Specifying the conformance testing API in this fashion allows a test to be added to
check that attempting to use a non-compliant method on a protected key is refused.

Just to make sure I'm not confused, is this a typo, I would have expected you to say "An
HSM only exposes the SignManifest method". Am I missing something?

An HSM only exposes the SignManifest method in FIPS mode. If you put it in FIPS Mode, it can never
be put in test mode and can never give the debug information or provide non-FIPS functions.

We used to spray the Test HSMs yellow with TEST in black so nobody would ever be silly enough to
create a trust chain to 'em.

You still didn't clarify. You originally said "An HSM would only expose the SignDigest
method"... I was questioning whether this was a typo, as I would only expect an HSM to
expose SignManifest.

My proposal is that the method SignDigest is entirely constrained by a specification that is common
across all algorithms and envelope formats. So there is never a reason to vary the implementation. JOSE,
CMS, COSE, DARE, OpenPGP will all use the same implementation from that point on. So that is all that an
HSM needs to expose for FIPS certified processing.

If however, we are talking about something less than a full HSM, a cryptographic co-processor on a CPU,
we might well want to expose SignManifest so we can offload that complexity from the processor. So yes,
you can move that part out to your driver :-)

Looking at the CPU co-processor implementation, there is a subtle issue here in that we inevitably expose
a side channel that would allow the co-processor to leak the secret key because it chooses the nonce so
the algorithm is inherently non-deterministic.

I will give the whole algorithm here because I don't want GCHQ visiting me with a secrecy order.

Goal: NOBUS compliant leakage of secret key of a nondeterministic signature scheme from an HSM with
only twice the processing load.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 3

First step is to reduce the private key to manageable size, I will use a deterministic key generation
approach from a 128 bit seed.

Let us imagine that the HSM creates and publishes signatures frequently so we can expect to collect tens
of thousands of examples. The approach I am going to take is trial and error. The signer chooses a
random nonce, creates two signatures signature and then checks to see if the first resulting signature
matches a template f(seed, sig) => bool. If the signature matches, the first is returned, otherwise the
second.

What this means is that the probability that the signature matches the template is 0.75 instead of 0.5.
Which is more than sufficient to leak the value of seed over a few thousand signatures. Not least because
all that you need to do is reduce the search space sufficiently to make an exhaustive search of the rest
feasible.

The pattern could be quite simple, put the signature value through a digest, take the first byte. Use the
low 7 bits to specify the bit position of the seed to be leaked and return true if the top bit matches the
corresponding bit in the seed.

For a bit more obfuscation, we could use a MAC with a secret key so that the basis for the statistical
variations is hidden.

I guess I should read just Motti's book instead of reinventing it all myself.

OK, so this seems to make the argument that a signing scheme MUST be deterministic. Otherwise, we can
never trust the HSMs not to be leaking their keys.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAMm%2BLwi4m8pZYKZA7UTT39ADsOX1WTaa2%2BgrcSRpV9Xzbbj1Hg%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi4m8pZYKZA7UTT39ADsOX1WTaa2%2BgrcSRpV9Xzbbj1Hg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi4m8pZYKZA7UTT39ADsOX1WTaa2%2BgrcSRpV9Xzbbj1Hg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwi4m8pZYKZA7UTT39ADsOX1WTaa2%2BgrcSRpV9Xzbbj1Hg%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Natanael <natanael.l@gmail.com> via CFRG <cfrg-bounces@irtf.org>
To: Phillip Hallam-Baker <phill@hallambaker.com>
CC: Derek Atkins <datkins@veridify.com>, pqc@ietf.org, IRTF CFRG <cfrg@irtf.org>,

sfluhrer@cisco.com, pqc-forum@list.nist.gov, cpeikert@alum.mit.edu
Subject: Re: [CFRG] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 01:24:53 PM ET
Attachments: ATT00001.txt

Den ons 28 sep. 2022 19:08Phillip Hallam-Baker <phill@hallambaker.com> skrev:

Looking at the CPU co-processor implementation, there is a subtle issue here in that we inevitably
expose a side channel that would allow the co-processor to leak the secret key because it chooses the
nonce so the algorithm is inherently non-deterministic.

I will give the whole algorithm here because I don't want GCHQ visiting me with a secrecy order.

Goal: NOBUS compliant leakage of secret key of a nondeterministic signature scheme from an HSM
with only twice the processing load.

First step is to reduce the private key to manageable size, I will use a deterministic key generation
approach from a 128 bit seed.

Let us imagine that the HSM creates and publishes signatures frequently so we can expect to collect
tens of thousands of examples. The approach I am going to take is trial and error. The signer chooses a
random nonce, creates two signatures signature and then checks to see if the first resulting signature
matches a template f(seed, sig) => bool. If the signature matches, the first is returned, otherwise the
second.

What this means is that the probability that the signature matches the template is 0.75 instead of 0.5.
Which is more than sufficient to leak the value of seed over a few thousand signatures. Not least
because all that you need to do is reduce the search space sufficiently to make an exhaustive search of
the rest feasible.

The pattern could be quite simple, put the signature value through a digest, take the first byte. Use the
low 7 bits to specify the bit position of the seed to be leaked and return true if the top bit matches the
corresponding bit in the seed.

For a bit more obfuscation, we could use a MAC with a secret key so that the basis for the statistical
variations is hidden.

I guess I should read just Motti's book instead of reinventing it all myself.

Page 1 of 2

mailto:natanael.l@gmail.com
mailto:cfrg-bounces@irtf.org
mailto:phill@hallambaker.com
mailto:datkins@veridify.com
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:sfluhrer@cisco.com
mailto:pqc-forum@list.nist.gov
mailto:cpeikert@alum.mit.edu

CFRG mailing list

CFRG@irtf.org

https://www.irtf.org/mailman/listinfo/cfrg

mailto:phill@hallambaker.com

OK, so this seems to make the argument that a signing scheme MUST be deterministic. Otherwise, we
can never trust the HSMs not to be leaking their keys.

There's a possible (but inefficient) way to address that. Commit to a sequence of random
values to be used in order, then use a Zero-knowledge proof to demonstrate you used the
correct random value input in the signature. It adds state to be managed, it's definitely a lot
slower, but it should work.

Natanael <natanael.l@gmail.com>

Page 2 of 2

From: Tony Arcieri <bascule@gmail.com> via pqc-forum@list.nist.gov
To: Phillip Hallam-Baker <phill@hallambaker.com>
CC: Derek Atkins <datkins@veridify.com>, cpeikert@alum.mit.edu, mike.ounsworth@entrust.com,

pqc-forum@list.nist.gov, pqc@ietf.org, sfluhrer@cisco.com, cfrg@irtf.org
Subject: Re: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 02:36:21 PM ET

On Wed, Sep 28, 2022 at 11:08 AM Phillip Hallam-Baker <phill@hallambaker.com> wrote:

OK, so this seems to make the argument that a signing scheme MUST be deterministic. Otherwise, we
can never trust the HSMs not to be leaking their keys.

The typical counterargument against deterministic signature schemes is that they enable fault
attacks, and lattice-based schemes are no exception to this:

https://tches.iacr.org/index.php/TCHES/article/view/7267

Trying to work around such attacks by adding some sort of post-signature check, such as
signing twice and comparing results, or ensuring that the signature verifies correctly, can be
defeated with a double fault attack which bypasses whatever branch prevents disclosing the
faulty signature.

Furthermore, mandating a deterministic scheme doesn't necessarily close the covert channel
if there's no way for a verifier to determine the signature was produced correctly under a
prescribed deterministic method.

--
Tony Arcieri

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com.

Page 1 of 1

mailto:bascule@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:phill@hallambaker.com
mailto:datkins@veridify.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:cfrg@irtf.org
mailto:phill@hallambaker.com
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftches.iacr.org%2Findex.php%2FTCHES%2Farticle%2Fview%2F7267&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C4f7eec3b0de149f2efb008daa1805581%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C637999869814799201%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=8nwTLyTf8Lok1Xf5QtXHay5IEsCuj0iTp875H%2B41URI%3D&reserved=0
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Natanael <natanael.l@gmail.com>
CC: Derek Atkins <datkins@veridify.com>, pqc@ietf.org, IRTF CFRG <cfrg@irtf.org>,

sfluhrer@cisco.com, pqc-forum@list.nist.gov, cpeikert@alum.mit.edu
Subject: [pqc-forum] Re: [CFRG] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 03:11:45 PM ET

On Wed, Sep 28, 2022 at 1:24 PM Natanael <natanael.l@gmail.com> wrote:

Den ons 28 sep. 2022 19:08Phillip Hallam-Baker <phill@hallambaker.com> skrev:

Looking at the CPU co-processor implementation, there is a subtle issue here in that we inevitably
expose a side channel that would allow the co-processor to leak the secret key because it chooses
the nonce so the algorithm is inherently non-deterministic.

I will give the whole algorithm here because I don't want GCHQ visiting me with a secrecy order.

Goal: NOBUS compliant leakage of secret key of a nondeterministic signature scheme from an HSM
with only twice the processing load.

First step is to reduce the private key to manageable size, I will use a deterministic key generation
approach from a 128 bit seed.

Let us imagine that the HSM creates and publishes signatures frequently so we can expect to collect
tens of thousands of examples. The approach I am going to take is trial and error. The signer
chooses a random nonce, creates two signatures signature and then checks to see if the first
resulting signature matches a template f(seed, sig) => bool. If the signature matches, the first is
returned, otherwise the second.

What this means is that the probability that the signature matches the template is 0.75 instead of
0.5. Which is more than sufficient to leak the value of seed over a few thousand signatures. Not least
because all that you need to do is reduce the search space sufficiently to make an exhaustive search
of the rest feasible.

The pattern could be quite simple, put the signature value through a digest, take the first byte. Use
the low 7 bits to specify the bit position of the seed to be leaked and return true if the top bit
matches the corresponding bit in the seed.

For a bit more obfuscation, we could use a MAC with a secret key so that the basis for the statistical
variations is hidden.

Page 1 of 2

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:natanael.l@gmail.com
mailto:datkins@veridify.com
mailto:pqc@ietf.org
mailto:cfrg@irtf.org
mailto:sfluhrer@cisco.com
mailto:pqc-forum@list.nist.gov
mailto:cpeikert@alum.mit.edu
mailto:natanael.l@gmail.com
mailto:phill@hallambaker.com

I guess I should read just Motti's book instead of reinventing it all myself.

OK, so this seems to make the argument that a signing scheme MUST be deterministic. Otherwise,
we can never trust the HSMs not to be leaking their keys.

There's a possible (but inefficient) way to address that. Commit to a sequence of random
values to be used in order, then use a Zero-knowledge proof to demonstrate you used the
correct random value input in the signature. It adds state to be managed, it's definitely a lot
slower, but it should work.

Alternatively, the nonce input must be a seed value that is combined with the manifest data and some
secret (e.g. the private key) to derive the output.

That approach would allow us to pull the nonce value out of the HSM envelope so the internals of the
HSM are entirely deterministic. But then as Tony Arceri points out, we become vulnerable to fault attacks.

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAMm%2BLwjQuOhBuyvXFL8hVa7hhVrTjQZUyX9AiAKpcf6v4%3DXtDw%40mail.gmail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 2

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwjQuOhBuyvXFL8hVa7hhVrTjQZUyX9AiAKpcf6v4%3DXtDw%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwjQuOhBuyvXFL8hVa7hhVrTjQZUyX9AiAKpcf6v4%3DXtDw%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwjQuOhBuyvXFL8hVa7hhVrTjQZUyX9AiAKpcf6v4%3DXtDw%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Christopher J Peikert <cpeikert@alum.mit.edu> via pqc-forum@list.nist.gov
To: Tony Arcieri <bascule@gmail.com>
CC: Derek Atkins <datkins@veridify.com>, mike.ounsworth@entrust.com, Phillip Hallam-Baker

<phill@hallambaker.com>, cfrg@irtf.org, pqc-forum@list.nist.gov, pqc@ietf.org,
sfluhrer@cisco.com

Subject: Re: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 06:42:56 PM ET

On Wed, Sep 28, 2022 at 2:36 PM Tony Arcieri <bascule@gmail.com> wrote:

On Wed, Sep 28, 2022 at 11:08 AM Phillip Hallam-Baker <phill@hallambaker.com> wrote:

OK, so this seems to make the argument that a signing scheme MUST be deterministic. Otherwise,
we can never trust the HSMs not to be leaking their keys.

Furthermore, mandating a deterministic scheme doesn't necessarily close the covert
channel if there's no way for a verifier to determine the signature was produced correctly
under a prescribed deterministic method.

This is a critically important point. In Falcon and Dilithium (at least), there are many valid
signatures for a given message and public key. There is no apparent way to restrict to a
unique valid signature, in a verifiable way. So, making the scheme “deterministic” does not
prevent covert leakage, because the signer can still misbehave/leak without being caught.

Sincerely yours in cryptography,

Chris

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CACOo0Qhb5wYmx%2BEqOQK5aVYMb_J5Y-
b8Rsj8oecTPLKc9%3DSNTg%40mail.gmail.com.

Page 1 of 1

mailto:cpeikert@alum.mit.edu
mailto:pqc-forum@list.nist.gov
mailto:bascule@gmail.com
mailto:datkins@veridify.com
mailto:mike.ounsworth@entrust.com
mailto:phill@hallambaker.com
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:bascule@gmail.com
mailto:phill@hallambaker.com
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0Qhb5wYmx%2BEqOQK5aVYMb_J5Y-b8Rsj8oecTPLKc9%3DSNTg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0Qhb5wYmx%2BEqOQK5aVYMb_J5Y-b8Rsj8oecTPLKc9%3DSNTg%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CACOo0Qhb5wYmx%2BEqOQK5aVYMb_J5Y-b8Rsj8oecTPLKc9%3DSNTg%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Greg Maxwell <gmaxwell@gmail.com> via pqc-forum@list.nist.gov
To: Christopher J Peikert <cpeikert@alum.mit.edu>
CC: Tony Arcieri <bascule@gmail.com>, Derek Atkins <datkins@veridify.com>,

mike.ounsworth@entrust.com, Phillip Hallam-Baker <phill@hallambaker.com>, cfrg@irtf.org, pqc-
forum@list.nist.gov, pqc@ietf.org, sfluhrer@cisco.com

Subject: Re: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Wednesday, September 28, 2022 07:06:56 PM ET

If the signatures are derandomized with a secret key, then an

unusually cautious user could load the same key material into two

independently designed/built/sold devices and continually compare

their output and abort if they disagree.

Now... if they're more likely to mess up handling the secret key

material than a single device is to exfiltrate their data is another

question...

On Wed, Sep 28, 2022 at 10:42 PM Christopher J Peikert

<cpeikert@alum.mit.edu> wrote:

>

> On Wed, Sep 28, 2022 at 2:36 PM Tony Arcieri <bascule@gmail.com> wrote:

>>

>> On Wed, Sep 28, 2022 at 11:08 AM Phillip Hallam-Baker <phill@hallambaker.com>

wrote:

>>>

>>> OK, so this seems to make the argument that a signing scheme MUST be

deterministic. Otherwise, we can never trust the HSMs not to be leaking their keys.

>>

>>

>> Furthermore, mandating a deterministic scheme doesn't necessarily close the covert

channel if there's no way for a verifier to determine the signature was produced

correctly under a prescribed deterministic method.

>

>

> This is a critically important point. In Falcon and Dilithium (at least), there are

many valid signatures for a given message and public key. There is no apparent way to

restrict to a unique valid signature, in a verifiable way. So, making the scheme

“deterministic” does not prevent covert leakage, because the signer can still

misbehave/leak without being caught.

Page 1 of 2

mailto:gmaxwell@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:cpeikert@alum.mit.edu
mailto:bascule@gmail.com
mailto:datkins@veridify.com
mailto:mike.ounsworth@entrust.com
mailto:phill@hallambaker.com
mailto:cfrg@irtf.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com

>

> Sincerely yours in cryptography,

> Chris

>

> --

> You received this message because you are subscribed to the Google Groups "pqc-

forum" group.

> To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

> To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/

d/msgid/pqc-forum/CACOo0Qhb5wYmx%2BEqOQK5aVYMb_J5Y-

b8Rsj8oecTPLKc9%3DSNTg%40mail.gmail.com.

--

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

To unsubscribe from this group and stop receiving emails from it, send an email to

pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/

CAAS2fgT3%2B65Yy8_tt1jOrLLKU1Y1DOioc9iJqKHVnnj41H8e3A%40mail.gmail.com.

Greg Maxwell <gmaxwell@gmail.com>

Page 2 of 2

From: Samuel Lavery <sam.lavery@gmail.com> via pqc-forum@list.nist.gov
To: Tony Arcieri <bascule@gmail.com>
CC: Phillip Hallam-Baker <phill@hallambaker.com>, Derek Atkins <datkins@veridify.com>,

cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,
sfluhrer@cisco.com, cfrg@irtf.org

Subject: Re: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Thursday, September 29, 2022 12:06:14 AM ET

My understanding is that for properly partitioned signature schemes, the additional entropy is
“applied” to the partition that isn’t dependent on the message. One also includes this value in
the signature for the verifier to use.
This is the Boneh-Shen-Waters transform, it’s a way to turn EUF-CMA schemes into sEUF-CMA.
SPHINCS+ achieves this via OptRand. I do something similar in mine. It’s entropy taken at
signing time and shared. The scheme is still deterministic, but gives you 256 or whatever
unique signatures per message without leaking any extra secret bits.

Cheers,

Sam

On Sep 28, 2022, at 11:35 AM, Tony Arcieri <bascule@gmail.com> wrote:

On Wed, Sep 28, 2022 at 11:08 AM Phillip Hallam-Baker <phill@hallambaker.com>
wrote:

OK, so this seems to make the argument that a signing scheme MUST be deterministic.
Otherwise, we can never trust the HSMs not to be leaking their keys.

The typical counterargument against deterministic signature schemes is that they
enable fault attacks, and lattice-based schemes are no exception to this:

https://tches.iacr.org/index.php/TCHES/article/view/7267

Trying to work around such attacks by adding some sort of post-signature check,
such as signing twice and comparing results, or ensuring that the signature verifies
correctly, can be defeated with a double fault attack which bypasses whatever
branch prevents disclosing the faulty signature.

Page 1 of 2

mailto:sam.lavery@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:bascule@gmail.com
mailto:phill@hallambaker.com
mailto:datkins@veridify.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:cfrg@irtf.org
mailto:phill@hallambaker.com
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftches.iacr.org%2Findex.php%2FTCHES%2Farticle%2Fview%2F7267&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C88e5f2cf00cc449dd7fe08daa1cff1c6%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638000211742663736%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=WJTOGpAODK9MRiBeP2QjCD0TeZG9K240JOWdCtqRvYs%3D&reserved=0

Furthermore, mandating a deterministic scheme doesn't necessarily close the
covert channel if there's no way for a verifier to determine the signature was
produced correctly under a prescribed deterministic method.

--
Tony Arcieri

--
You received this message because you are subscribed to the Google Groups "pqc-
forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to
pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pqc-forum/
CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gm
ail.com.

Samuel Lavery <sam.lavery@gmail.com>

Page 2 of 2

mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer

From: Phillip Hallam-Baker <phill@hallambaker.com> via pqc-forum@list.nist.gov
To: Samuel Lavery <sam.lavery@gmail.com>
CC: Tony Arcieri <bascule@gmail.com>, Derek Atkins <datkins@veridify.com>,

cpeikert@alum.mit.edu, mike.ounsworth@entrust.com, pqc-forum@list.nist.gov, pqc@ietf.org,
sfluhrer@cisco.com, cfrg@irtf.org

Subject: Re: [pqc-forum] Covert channel attack means signing should be deterministic
Date: Friday, September 30, 2022 06:25:44 PM ET

My top level point is that this particular concern is something we should address once in standards space
and apply to all the algorithms we accept rather than accepting whatever approach the individual
algorithms picked.

If that results in someone saying 'hey I need X because of Y', well, that is a valuable piece of data we just
picked up. If we are considering HOTDOG vs BURGER and they can't use a common module, hey I want to
know that and I want to know the reason.

My secondary point is about modularization of systems. As Tony reminds us, it was the fault attack issue
that drove us to non-deterministic signing in the first place. I am not disputing that constraint but I also
know that state actors have run bogus crypto HSM companies in the past and next time it might not be a
friendly govt. that does it. So the covert channel issue is an equal concern for me.

What this comes down to is that for my most security sensitive applications, I am going to be looking for
devices that are modularized in such a fashion that I can buy 10 devices, pick two at random, qualify them
and use the other 8 for production. The qualification process is going to be destructive insofar as I am not
going to be able to use them in FIPS mode any more.

For Ed448, I can achieve the same result non destructively by applying threshold. Instead of relying on one
vendor, I pick two and now Mallet has to compromize both.

On Thu, Sep 29, 2022 at 12:05 AM Samuel Lavery <sam.lavery@gmail.com> wrote:

My understanding is that for properly partitioned signature schemes, the additional entropy
is “applied” to the partition that isn’t dependent on the message. One also includes this
value in the signature for the verifier to use.
This is the Boneh-Shen-Waters transform, it’s a way to turn EUF-CMA schemes into sEUF-
CMA. SPHINCS+ achieves this via OptRand. I do something similar in mine. It’s entropy taken
at signing time and shared. The scheme is still deterministic, but gives you 256 or whatever
unique signatures per message without leaking any extra secret bits.

Cheers,

Page 1 of 3

mailto:phill@hallambaker.com
mailto:pqc-forum@list.nist.gov
mailto:sam.lavery@gmail.com
mailto:bascule@gmail.com
mailto:datkins@veridify.com
mailto:cpeikert@alum.mit.edu
mailto:mike.ounsworth@entrust.com
mailto:pqc-forum@list.nist.gov
mailto:pqc@ietf.org
mailto:sfluhrer@cisco.com
mailto:cfrg@irtf.org
mailto:sam.lavery@gmail.com

Sam

On Sep 28, 2022, at 11:35 AM, Tony Arcieri <bascule@gmail.com> wrote:

On Wed, Sep 28, 2022 at 11:08 AM Phillip Hallam-Baker
<phill@hallambaker.com> wrote:

OK, so this seems to make the argument that a signing scheme MUST be deterministic.
Otherwise, we can never trust the HSMs not to be leaking their keys.

The typical counterargument against deterministic signature schemes is that
they enable fault attacks, and lattice-based schemes are no exception to this:

https://tches.iacr.org/index.php/TCHES/article/view/7267

Trying to work around such attacks by adding some sort of post-signature check,
such as signing twice and comparing results, or ensuring that the signature
verifies correctly, can be defeated with a double fault attack which bypasses
whatever branch prevents disclosing the faulty signature.

Furthermore, mandating a deterministic scheme doesn't necessarily close the
covert channel if there's no way for a verifier to determine the signature was
produced correctly under a prescribed deterministic method.

--
Tony Arcieri

--
You received this message because you are subscribed to the Google Groups
"pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/
d/msgid/pqc-forum/
CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.g
mail.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 2 of 3

mailto:bascule@gmail.com
mailto:phill@hallambaker.com
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftches.iacr.org%2Findex.php%2FTCHES%2Farticle%2Fview%2F7267&data=05%7C01%7Cyi-kai.liu%40nist.gov%7C3b67d3277ae84ffe170108daa332b2ef%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638001735441617487%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=eVpZLAcQNM%2B%2FMt%2FVKCiQEy%2FEKzSWyO9JoCzP5q2t07M%3D&reserved=0
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAHOTMV%2B%3DBhN8pB_0zJRj4C5sHftvkLqpvNiy0bMD81ER06vWAQ%40mail.gmail.com?utm_medium=email&utm_source=footer

--
You received this message because you are subscribed to the Google Groups "pqc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/
CAMm%2BLwiqEwyCsYSMmEYkYtgvnL%3DfNz%3D4wzw5q%3DMjdyDmduiALQ%40mail.gmail
.com.

Phillip Hallam-Baker <phill@hallambaker.com>

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiqEwyCsYSMmEYkYtgvnL%3DfNz%3D4wzw5q%3DMjdyDmduiALQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiqEwyCsYSMmEYkYtgvnL%3DfNz%3D4wzw5q%3DMjdyDmduiALQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiqEwyCsYSMmEYkYtgvnL%3DfNz%3D4wzw5q%3DMjdyDmduiALQ%40mail.gmail.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/CAMm%2BLwiqEwyCsYSMmEYkYtgvnL%3DfNz%3D4wzw5q%3DMjdyDmduiALQ%40mail.gmail.com?utm_medium=email&utm_source=footer

	1. 2022-09-18 15:43- Mike Ounsworth
	2. 2022-09-18 22:46- Christopher J Peikert
	3. 2022-09-19 04:55- Simon Josefsson
	4. 2022-09-19 07:12- Dmitry Belyavsky
	5. 2022-09-19 08:42- Scott Fluhrer (sfluhrer)
	6. 2022-09-19 09:23- Jeff Burdges
	7. 2022-09-19 09:27- Soatok Dreamseeker
	8. 2022-09-19 09:42- Jeff Burdges
	9. 2022-09-19 10:34- Riad S. Wahby
	10. 2022-09-19 11:27- Kampanakis, Panos
	11. 2022-09-19 13:53- Riad S. Wahby
	12. 2022-09-19 17:17- Mike Ounsworth
	13. 2022-09-19 17:24- Phillip Hallam-Baker
	14. 2022-09-20 06:08- Michael Richardson
	15. 2022-09-20 08:52- Scott Fluhrer (sfluhrer)
	16. 2022-09-20 09:10- Christopher Peikert
	17. 2022-09-20 09:18- Christopher J Peikert
	18. 2022-09-20 12:35- Phillip Hallam-Baker
	19. 2022-09-20 13:03- Derek Atkins
	20. 2022-09-20 17:28- Brent Kimberley
	21. 2022-09-22 07:58- Hubert Kario
	22. 2022-09-28 11:49- Phillip Hallam-Baker
	23. 2022-09-28 12:11- Derek Atkins
	24. 2022-09-28 13:08- Phillip Hallam-Baker
	25. 2022-09-28 13:24- Natanael
	26. 2022-09-28 14:36- Tony Arcieri
	27. 2022-09-28 15:11- Phillip Hallam-Baker
	28. 2022-09-28 18:42- Christopher J Peikert
	29. 2022-09-28 19:06- Greg Maxwell
	30. 2022-09-29 00:06- Samuel Lavery
	31. 2022-09-30 18:25- Phillip Hallam-Baker

